

FOUNDATIONS OF INFORMATION

SECURITY

A Straightforward Introduction

by Jason Andress

San Francisco

FOUNDATIONS OF INFORMATION SECURITY. Copyright © 2019 by Jason Andress.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-10: 1-7185-0004-1
ISBN-13: 978-1-7185-0004-4

Publisher: William Pollock
Production Editor: Meg Sneeringer
Cover Illustration: Rick Reese
Developmental Editor: Frances Saux
Technical Reviewer: Cliff Janzen
Copyeditor: Kim Wimpsett
Compositor: Meg Sneeringer
Proofreader: James Fraleigh
Indexer: Beth Nauman-Montana

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc.
directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress issued the following Cataloging-in-Publication Data for the first edition:

Names: Andress, Jason, author.
Title: Foundations of information security: a straightforward introduction /

Jason Andress.
Description: 1st ed. | San Francisco : No Starch Press, 2019. | Includes

bibliographical references and index. | Summary: "Begins with an
introduction to information security, including key topics such as
confidentiality, integrity, and availability, and then moves on to
practical applications of these ideas in the areas of operational,
physical, network, application, and operating system security"--
Provided by publisher.

Identifiers: LCCN 2019024099 (print) | LCCN 2019024100 (ebook) | ISBN
9781718500044 (paperback) | ISBN 1718500041 (paperback) | ISBN
9781718500051 (ebook)

Subjects: LCSH: Computer security. | Computer networks--Security measures.
| Electronic information resources--Access control.

Classification: LCC QA76.9.A25 A5445 2019 (print) | LCC QA76.9.A25
(ebook) | DDC 005.8--dc23

LC record available at https://lccn.loc.gov/2019024099
LC ebook record available at https://lccn.loc.gov/2019024100

mailto:info@nostarch.com
http://www.nostarch.com/
https://lccn.loc.gov/2019024099
https://lccn.loc.gov/2019024100

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trademarked
name, we are using the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

Le meglio è l’inimico del bene.

—Voltaire

About the Author

Dr. Jason Andress is a seasoned security professional, security
researcher, and technophile. He has been writing on security topics for
over a decade, covering data security, network security, hardware
security, penetration testing, and digital forensics, among others.

About the Technical Reviewer

Since the early days of Commodore PET and VIC-20, technology has
been a constant companion (and sometimes an obsession!) to Cliff. He
discovered his career passion when he moved into information security
in 2008 after a decade of IT operations. Since that time, Cliff is grateful
to have had the opportunity to work with and learn from some of the
best people in the industry including Jason and the fine people at No
Starch. Cliff spends a majority of the work day managing and
mentoring a great team, but strives to stay technically relevant by
tackling everything from security policy reviews to penetration testing.
He feels lucky to have a career that is also his favourite hobby and a wife
that supports him.

BRIEF CONTENTS

Acknowledgments

Introduction

Chapter 1: What Is Information Security?

Chapter 2: Identification and Authentication

Chapter 3: Authorization and Access Controls

Chapter 4: Auditing and Accountability

Chapter 5: Cryptography

Chapter 6: Compliance, Laws, and Regulations

Chapter 7: Operations Security

Chapter 8: Human Element Security

Chapter 9: Physical Security

Chapter 10: Network Security

Chapter 11: Operating System Security

Chapter 12: Mobile, Embedded, and Internet of Things Security

Chapter 13: Application Security

Chapter 14: Assessing Security

Notes

Index

CONTENTS IN DETAIL

ACKNOWLEDGMENTS

INTRODUCTION

Who Should Read This Book?
About This Book

1

WHAT IS INFORMATION SECURITY?

Defining Information Security
When Are You Secure?
Models for Discussing Security Issues

The Confidentiality, Integrity, and Availability Triad
The Parkerian Hexad

Attacks
Types of Attacks
Threats, Vulnerabilities, and Risk
Risk Management
Incident Response

Defense in Depth
Summary
Exercises

2

IDENTIFICATION AND AUTHENTICATION

Identification
Who We Claim to Be
Identity Verification
Falsifying Identification

Authentication

Factors
Multifactor Authentication
Mutual Authentication

Common Identification and Authentication Methods
Passwords
Biometrics
Hardware Tokens

Summary
Exercises

3

AUTHORIZATION AND ACCESS CONTROLS

What Are Access Controls?
Implementing Access Controls

Access Control Lists
Capabilities

Access Control Models
Discretionary Access Control
Mandatory Access Control
Rule-Based Access Control
Role-Based Access Control
Attribute-Based Access Control
Multilevel Access Control

Physical Access Controls
Summary
Exercises

4

AUDITING AND ACCOUNTABILITY

Accountability
Security Benefits of Accountability

Nonrepudiation
Deterrence
Intrusion Detection and Prevention

Admissibility of Records
Auditing

What Do You Audit?
Logging
Monitoring
Auditing with Assessments

Summary
Exercises

5

CRYPTOGRAPHY

The History of Cryptography
The Caesar Cipher
Cryptographic Machines
Kerckhoffs’s Principles

Modern Cryptographic Tools
Keyword Ciphers and One-Time Pads
Symmetric and Asymmetric Cryptography
Hash Functions
Digital Signatures
Certificates

Protecting Data at Rest, in Motion, and in Use
Protecting Data at Rest
Protecting Data in Motion
Protecting Data in Use

Summary
Exercises

6

COMPLIANCE, LAWS, AND REGULATIONS

What Is Compliance?
Types of Compliance
Consequences of Noncompliance

Achieving Compliance with Controls

Types of Controls
Key vs. Compensating Controls

Maintaining Compliance
Laws and Information Security

Government-Related Regulatory Compliance
Industry-Specific Regulatory Compliance
Laws Outside of the United States

Adopting Frameworks for Compliance
International Organization for Standardization
National Institute of Standards and Technology
Custom Frameworks

Compliance amid Technological Changes
Compliance in the Cloud
Compliance with Blockchain
Compliance with Cryptocurrencies

Summary
Exercises

7

OPERATIONS SECURITY

The Operations Security Process
Identification of Critical Information
Analysis of Threats
Analysis of Vulnerabilities
Assessment of Risks
Application of Countermeasures

Laws of Operations Security
First Law: Know the Threats
Second Law: Know What to Protect
Third Law: Protect the Information

Operations Security in Our Personal Lives
Origins of Operations Security

Sun Tzu
George Washington
Vietnam War

Business
Interagency OPSEC Support Staff

Summary
Exercises

8

HUMAN ELEMENT SECURITY

Gathering Information for Social Engineering Attacks
Human Intelligence
Open Source Intelligence
Other Kinds of Intelligence

Types of Social Engineering Attacks
Pretexting
Phishing
Tailgating

Building Security Awareness with Security Training Programs
Passwords
Social Engineering Training
Network Usage
Malware
Personal Equipment
Clean Desk Policies
Familiarity with Policy and Regulatory Knowledge

Summary
Exercises

9

PHYSICAL SECURITY

Identifying Physical Threats
Physical Security Controls

Deterrent Controls
Detective Controls
Preventive Controls
Using Physical Access Controls

Protecting People
Physical Concerns for People
Ensuring Safety
Evacuation
Administrative Controls

Protecting Data
Physical Concerns for Data
Accessibility of Data
Residual Data

Protecting Equipment
Physical Concerns for Equipment
Site Selection
Securing Access
Environmental Conditions

Summary
Exercises

10

NETWORK SECURITY

Protecting Networks
Designing Secure Networks
Using Firewalls
Implementing Network Intrusion Detection Systems

Protecting Network Traffic
Using Virtual Private Networks
Protecting Data over Wireless Networks
Using Secure Protocols

Network Security Tools
Wireless Protection Tools
Scanners
Packet Sniffers
Honeypots
Firewall Tools

Summary
Exercises

11

OPERATING SYSTEM SECURITY

Operating System Hardening
Remove All Unnecessary Software
Remove All Unessential Services
Alter Default Accounts
Apply the Principle of Least Privilege
Perform Updates
Turn On Logging and Auditing

Protecting Against Malware
Anti-malware Tools
Executable Space Protection
Software Firewalls and Host Intrusion Detection

Operating System Security Tools
Scanners
Vulnerability Assessment Tools
Exploit Frameworks

Summary
Exercises

12

MOBILE, EMBEDDED, AND INTERNET OF THINGS

SECURITY

Mobile Security
Protecting Mobile Devices
Mobile Security Issues

Embedded Security
Where Embedded Devices Are Used
Embedded Device Security Issues

Internet of Things Security
What Is an IoT Device?
IoT Security Issues

Summary
Exercises

13

APPLICATION SECURITY

Software Development Vulnerabilities
Buffer Overflows
Race Conditions
Input Validation Attacks
Authentication Attacks
Authorization Attacks
Cryptographic Attacks

Web Security
Client-Side Attacks
Server-Side Attacks

Database Security
Protocol Issues
Unauthenticated Access
Arbitrary Code Execution
Privilege Escalation

Application Security Tools
Sniffers
Web Application Analysis Tools
Fuzzers

Summary
Exercises

14

ASSESSING SECURITY

Vulnerability Assessment
Mapping and Discovery
Scanning
Technological Challenges for Vulnerability Assessment

Penetration Testing
The Penetration Testing Process
Classifying Penetration Tests
Targets of Penetration Tests

Bug Bounty Programs
Technological Challenges for Penetration Testing

Does This Really Mean You’re Secure?
Realistic Testing
Can You Detect Your Own Attacks?
Secure Today Doesn’t Mean Secure Tomorrow
Fixing Security Holes Is Expensive

Summary
Exercises

NOTES

INDEX

ACKNOWLEDGMENTS

I want to thank my wife for bearing with me through another writing
project, especially during my excessive complaining and foot dragging
over (ahem) certain chapters <3.

I also want to thank the whole crew at No Starch Press for all their
time and hard work in making this a better book. Without all the many
rounds of editing, reviewing, and feedback, this book would have been a
considerably less polished version of itself.

INTRODUCTION

When I was in school, I was faced with a choice between pursuing a
concentration in either information security or software engineering.
The software engineering courses had terribly boring-sounding titles,
so information security it was. Little did I know what a twisted and
winding path I’d embarked on.

Information security as a career can take you many different places.
Over the years, I’ve dealt with large-scale malware outbreaks, collected
forensic information for court cases, hunted for foreign hackers in
computer systems, hacked into systems and applications (with
permission!), pored over an astonishing amount of log data,
implemented and maintained all manner of security tooling, authored
many thousands of lines of code to fit square pegs into round holes,
worked on open source projects, spoken at security conferences, taught
classes, and written somewhere into the upper regions of hundreds of
thousands of words on the topic of security.

This book surveys the information security field as a whole. It’s well-
suited to anyone wondering what people mean when they use the term
information security—or anyone interested in the field and wondering
where to start. The chapters offer clear, nontechnical explanations of
how information security works and how to apply these principles to

your own career. It should help you learn about information security
without making you consult a massive textbook. I’ll first cover the
fundamental ideas, such as authentication and authorization, needed to
understand the field’s key concepts, such as the principle of least
privilege and various security models. I’ll then dive into a survey of real-
world applications of these ideas in the areas of operations, human,
physical, network, operating system, mobile, embedded, Internet of
Things (IoT), and application security. I’ll finish up by looking at how
to assess security.

Who Should Read This Book?

This book will be a valuable resource to beginning security
professionals, as well as to network and system administrators. You
should use the information provided to develop a better understanding
of how you protect your information assets and defend against attacks,
as well as how to apply these concepts systematically to make your
environment more secure.

Those in management positions will find this information useful as
well, because it should help you develop better overall security practices
for your organizations. The concepts discussed in this book can be used
to drive security projects and policies and to mitigate some of the issues
discussed.

About This Book

This book is designed to take you through a foundational understanding
of information security from the ground up, so it’s best read from start
to finish. Throughout the book you will see numbered references to the
Notes section at the end of the book, where you can find more
information on some of these topics. Here’s what you’ll find in each
chapter:

Chapter 1: What Is Information Security? Introduces some of
the most basic concepts of information security, such as the

confidentiality, integrity, and availability triad; basic concepts of
risk; and controls to mitigate it.

Chapter 2: Identification and Authentication Covers the
security principles of identification and authentication.

Chapter 3: Authorization and Access Controls Discusses the
use of authorization and access controls, which are means of
determining who or what can access your resources.

Chapter 4: Auditing and Accountability Explains the use of
auditing and accountability for making sure you’re aware of what
people are doing in your environment.

Chapter 5: Cryptography Covers the use of cryptography for
protecting the confidentiality of your data.

Chapter 6: Compliance, Laws, and Regulations Outlines the
laws and regulations relevant to information security and what it
means to comply with them.

Chapter 7: Operations Security Covers operations security,
which is the process you use to protect your information.

Chapter 8: Human Element Security Explores issues
pertaining to the human element of information security, such as
the tools and techniques that attackers use to con us and how to
defend against them.

Chapter 9: Physical Security Discusses the physical aspects of
information security.

Chapter 10: Network Security Examines how you might
protect your networks from a variety of different angles, such as
network design, security devices, and security tooling.

Chapter 11: Operating System Security Explores the strategies
you can use for securing the operating system, such as hardening
and patching, and the steps that you can take to do so.

Chapter 12: Mobile, Embedded, and Internet of Things
Security Covers how to ensure security for mobile devices,

embedded devices, and IoT devices.

Chapter 13: Application Security Considers the various
methods for securing applications.

Chapter 14: Assessing Security Discusses tools such as
scanning and penetration testing that you can use to suss out
security issues in your hosts and applications.

Writing this book was an adventure for me, as always. I hope you
enjoy the result and that your understanding of the world of
information security expands. The security world can be an interesting
and, at times, hair-raising field to work in. Welcome and good luck!

1

WHAT IS INFORMATION SECURITY?

Today, many of us work with computers, play on computers at home, go
to school online, buy goods from merchants on the internet, take our
laptops to the coffee shop to read emails, use our smartphones to check
our bank balances, and track our exercise with sensors on our wrists. In
other words, computers are ubiquitous.

Although technology allows us to access a host of information with
only a click of the mouse, it also poses major security risks. If the
information on the systems used by our employers or our banks
becomes exposed to an attacker, the consequences could be dire indeed.
We could suddenly find the contents of our bank account transferred to
a bank in another country in the middle of the night. Our employer
could lose millions of dollars, face legal prosecution, and suffer damage
to its reputation because of a system configuration issue that allowed an
attacker to gain access to a database containing personally identifiable
information (PII) or proprietary information. Such issues appear in the
news media with disturbing regularity.

Thirty years ago, such breaches were nearly nonexistent, largely
because the technology was at a relatively low level and few people were

using it. Although technology changes at an increasingly rapid rate,
much of the theory about keeping ourselves secure lags behind. If you
can gain a good understanding of the basics of information security,
you’re on a strong footing to cope with changes as they come.

In this chapter, I’ll cover some of the basic concepts of information
security, including security models, attacks, threats, vulnerabilities, and
risks. I’ll also delve into some slightly more complex concepts when
discussing risk management, incident response, and defense in depth.

Defining Information Security

Generally speaking, security means protecting your assets, whether from
attackers invading your networks, natural disasters, vandalism, loss, or
misuse. Ultimately, you’ll attempt to secure yourself against the most
likely forms of attack, to the best extent you reasonably can, given your
environment.

You may have a broad range of potential assets you want to secure.
These could include physical items with inherent value, such as gold, or
those that have value to your business, such as computing hardware. You
may also have valuables of a more ethereal nature, such as software,
source code, or data.

In today’s computing environment, you’re likely to find that your
logical assets (assets that exist as data or intellectual property) are at
least as valuable as your physical assets (those that are tangible objects
or materials), if not more valuable. That’s where information security
comes in.

Information security is defined as “protecting information and
information systems from unauthorized access, use, disclosure,
disruption, modification, or destruction,” according to US law.1 In other
words, you want to protect your data and systems from those who seek
to misuse them, intentionally or unintentionally, or those who should
not have access to them at all.

When Are You Secure?

Eugene Spafford once said, “The only truly secure system is one that is
powered off, cast in a block of concrete and sealed in a lead-lined room
with armed guards—and even then, I have my doubts.”2 A system in
such a state might be secure, but it’s not usable or productive. As you
increase the level of security, you usually decrease the level of
productivity.

Additionally, when securing an asset, system, or environment, you
must consider how the level of security relates to the value of the item
being secured. If you’re willing to accommodate the decrease in
performance, you can apply very high levels of security to every asset for
which you’re responsible. You could build a billion-dollar facility
surrounded by razor-wire fences and patrolled by armed guards and
vicious attack dogs, complete with a hermetically sealed vault, to
safeguard your mom’s chocolate chip cookie recipe, but that would be
overkill. The cost of the security you put in place should never outstrip
the value of what it’s protecting.

In some environments, however, such security measures might not
be enough. In any environment where you plan to put heightened levels
of security in place, you also need to consider the cost of replacing your
assets if you happen to lose them and make sure you establish
reasonable levels of protection for their value.

Defining the exact point at which you can be considered secure
presents a bit of a challenge. Are you secure if your systems are properly
patched? Are you secure if you use strong passwords? Are you secure if
you’re disconnected from the internet entirely? From my point of view,
the answer to all these questions is no. No single activity or action will
make you secure in every situation.

That’s because even if your systems are properly patched, there will
always be new attacks to which you’re vulnerable. When you’re using
strong passwords, an attacker will exploit a different avenue instead.
When you’re disconnected from the internet, an attacker could still
physically access or steal your systems. In short, it’s difficult to define
when you’re truly secure. On the other hand, defining when you’re

insecure is a much easier task. Here are several examples that would put
you in this state:

Not applying security patches or application updates to your
systems

Using weak passwords such as “password” or “1234”

Downloading programs from the internet

Opening email attachments from unknown senders

Using wireless networks without encryption

I could go on for some time adding to this list. The good thing is
that once you can point out the areas in an environment that can make
it insecure, you can take steps to mitigate these issues. This problem is
similar to cutting something in half over and over. There will always be
some small portion left to cut in half again. Although you may never get
to a state that you can definitively call “secure,” you can take steps in the
right direction.

THIS LAW IS YOUR LAW …

The bodies of law that define standards for security vary quite a bit
from one industry to another and differ wildly from one country
to another. An example of this is the difference in data privacy laws
between the United States and the European Union.
Organizations that operate globally need to take care that they’re
not violating any such laws while conducting business. When in
doubt, consult legal counsel before acting.

Some bodies of law or regulations do try to define what secure
means, or at least some of the steps you should take to be “secure
enough.” The Payment Card Industry Data Security Standard
(PCI DSS) applies to companies that process credit card payments,
the Health Insurance Portability and Accountability Act of 1996
(HIPAA) is for organizations that handle healthcare and patient
records, the Federal Information Security Management Act

(FISMA) defines security standards for many federal agencies in
the United States, and there are a host of others. Whether these
standards are effective is debatable, but following the security
standards defined for the industry in which you’re operating is
advisable, if not mandated.

Models for Discussing Security Issues

When discussing security issues, it’s often helpful to have a model that
you can use as a foundation or a baseline. This provides a consistent set
of terminology and concepts that we, as security professionals, can refer
to.

The Confidentiality, Integrity, and Availability Triad

Three of the primary concepts in information security are
confidentiality, integrity, and availability, commonly known as the
confidentiality, integrity, and availability (CIA) triad, as shown in Figure 1-
1.

Figure 1-1: The CIA triad

The CIA triad is a model by which you can think about and discuss
security concepts. It’s also sometimes written as CAI or expressed in its
negative form as disclosure, alteration, and denial (DAD).

Confidentiality

Confidentiality refers to our ability to protect our data from those who
are not authorized to view it. You could implement confidentiality at
many levels of a process.

As an example, imagine a person is withdrawing money from an
ATM. The person in question will likely seek to maintain the
confidentiality of the personal identification number (PIN) that allows
him to draw funds from the ATM if he has his ATM card. Additionally,
the owner of the ATM will maintain the confidentiality of the account
number, balance, and any other information needed to communicate to
the bank from which the funds are being drawn. The bank will also
maintain the confidentiality of the transaction with the ATM and the
balance change in the account after the funds have been withdrawn.

Confidentiality can be compromised in a number of ways. You could
lose a laptop containing data. A person could look over your shoulder
while you enter a password. You could send an email attachment to the
wrong person, or an attacker could penetrate your systems, to name a
few ways.

Integrity

Integrity is the ability to prevent people from changing your data in an
unauthorized or undesirable manner. To maintain integrity, not only do
you need to have the means to prevent unauthorized changes to your
data, but you need the ability to reverse unwanted authorized changes.

A good example of mechanisms that allow you to control integrity
are in the file systems of many modern operating systems, such as
Windows and Linux. For the purposes of preventing unauthorized
changes, such systems often implement permissions that restrict what
actions an unauthorized user can perform on a given file. For example,
the owner of a file might have permission to read it and write to it,
while others might have permission only to read, or no permission to
access it at all. Additionally, some such systems and many applications,
such as databases, can allow you to undo or roll back changes that are
undesirable.

Integrity is particularly important when it concerns data that
provides the foundation for other decisions. If an attacker were to alter
the data that contained the results of medical tests, a doctor might
prescribe the wrong treatment, which could kill the patient.

Availability

The final leg of the CIA triad is availability. Availability refers to the
ability to access our data when we need it. You could lose availability
due to a power loss, operating system or application problems, network
attacks, or the compromising of a system, for example. When an outside
party, like an attacker, causes such issues, we typically call this a denial-
of-service (DoS) attack.

How Does the CIA Triad Relate to Security?

Given the elements of the CIA triad, we can begin to discuss security
issues with more detail than we otherwise could. For example, let’s
consider a shipment of backup tapes on which you’ve stored the only
existing, unencrypted copies of some sensitive data.

If you were to lose the shipment in transit, you would have a security
issue. This is likely to include a breach of confidentiality since your files
were not encrypted. The lack of encryption could also cause integrity
issues. If you recover the tapes in the future, it may not be immediately
obvious to you if an attacker had altered the unencrypted files, as you
would have no good way to discern altered from unaltered data. As for
availability, you’ll have an issue unless the tapes are recovered since you
don’t have backup copies of the files.

Although you can describe the situation in this example with relative
accuracy using the CIA triad, you might find that the model is too
restrictive to describe the entire situation. A more extensive model, the
Parkerian hexad, exists for these cases.

The Parkerian Hexad

The Parkerian hexad, a less well-known model named after Donn
Parker and introduced in his book Fighting Computer Crime, provides a
somewhat more complex variation of the classic CIA triad. Where the
CIA triad consists only of confidentiality, integrity, and availability, the
Parkerian hexad consists of these three principles as well as possession or
control, authenticity, and utility,3 for a total of six principles, as shown
in Figure 1-2.

Figure 1-2: The Parkerian hexad

Confidentiality, Integrity, and Availability

As I mentioned, the Parkerian hexad includes the three principles of the
CIA triad, with the same definitions just discussed. Parker describes
integrity slightly differently; he doesn’t account for authorized, but
incorrect, modification of data. For him, the data must be whole and
completely unchanged from its previous state.

Possession or Control

In the Parkerian hexad, possession or control refers to the physical
disposition of the media on which the data is stored. This enables you to
discuss your loss of the data in its physical medium without involving
other factors such as availability. Returning to the example of your lost
shipment of backup tapes, let’s say that some of them were encrypted
and some of them were not. The principle of possession would enable
you to more accurately describe the scope of the incident; the encrypted
tapes in the lot cause a possession problem but not a confidentiality
problem, while the unencrypted tapes cause a problem on both counts.

Authenticity

The principle of authenticity allows you to say whether you’ve attributed
the data in question to the proper owner or creator. For example, if you
send an email message that is altered so that it appears to have come
from a different email address than the one from which it was actually
sent, you would be violating the authenticity of the email. Authenticity
can be enforced using digital signatures, which I’ll discuss further in
Chapter 5.

A similar, but reversed, concept to this is nonrepudiation, which
prevents people from taking an action, such as sending an email and
then later denying that they have done so. I’ll discuss nonrepudiation at
greater length in Chapter 4 as well.

Utility

Finally, utility refers to how useful the data is to you. Utility is also the
only principle of the Parkerian hexad that is not necessarily binary in
nature; you can have a variety of degrees of utility, depending on the
data and its format. This is a somewhat abstract concept, but it does
prove useful in discussing certain situations in the security world.

For instance, in the shipment of backup tapes example, imagine that
some of the tapes were encrypted and some were not. For an attacker or
other unauthorized person, the encrypted tapes would likely be of very
little utility, as the data would not be readable. The unencrypted tapes

would be of much greater utility, as the attacker or unauthorized person
would be able to access the data.

The concepts discussed in both the CIA triad and the Parkerian
hexad provide a practical basis to discuss all the ways in which
something can go wrong in the world of information security. These
models enable you to better discuss the attacks that you might face and
the types of controls that you need to put in place to combat them.

Attacks

You may face attacks from a wide variety of approaches and angles. You
can break these down according to the type of attack, the risk the attack
represents, and the controls you might use to mitigate it.

Types of Attacks

You can generally place attacks into one of four categories: interception,
interruption, modification, and fabrication. Each of the categories can
affect one or more of the principles of the CIA triad, as shown in Figure
1-3.

Figure 1-3: The CIA triad and categories of attacks

The line between the categories of attack and the effects they can
have are somewhat blurry. Depending on the attack in question, you
might include it in more than one category or have more than one type
of effect.

Interception

Interception attacks allow unauthorized users to access your data,
applications, or environments, and they are primarily attacks against
confidentiality. Interception might take the form of unauthorized file
viewing or copying, eavesdropping on phone conversations, or reading
someone else’s email, and you can conduct it against data at rest or in
motion (concepts explained in the “Data at Rest and in Motion” box).
When they’re properly executed, interception attacks can be difficult to
detect.

DATA AT REST AND IN MOTION

You will find, repeatedly throughout this book, that I refer to data
being either “at rest” or “in motion,” so let’s talk about what this
means. Data at rest is stored data that is not in the process of being
moved from one place to another. It may be on a hard drive or
flash drive, or it may be stored in a database, for example. This
type of data is generally protected with some sort of encryption,
often at the level of the file or entire storage device.

Data in motion is data that is moving from one place to another.
When you are using your online banking session, the sensitive
data flowing between your web browser and your bank is data in
motion. Data in motion is also protected by encryption, but in this
case the encryption protects the network protocol or path used to
move the data from one place to another.

Some may also posit a third category, data in use. Data in use
would be data that an application or individual was actively
accessing or modifying. Protections on data in use would include

permissions and authentication of users. Often you will find the
concept of data in use conflated with data in motion. Sound
arguments can be made on both sides about whether we should
treat this type of data as its own category.

Interruption

Interruption attacks make your assets unusable or unavailable to you on
a temporary or permanent basis. These attacks often affect availability
but can affect integrity, as well. You would classify a DoS attack on a
mail server as an availability attack.

On the other hand, if an attacker manipulated the processes on
which a database runs to prevent access to the data it contains, you
might consider this an integrity attack because of the possible loss or
corruption of data, or you might consider it a combination of the two.
You might also consider such a database attack to be a modification
attack rather than an interruption attack, as you’ll see next.

Modification

Modification attacks involve tampering with an asset. Such attacks
might primarily be considered attacks on integrity but could also
represent attacks on availability. If you access a file in an unauthorized
manner and alter the data it contains, you’ve affected the integrity of the
file’s data. However, if the file in question is a configuration file that
manages how a service behaves—perhaps one that is acting as a web
server—changing the contents of the file might affect the availability of
that service. If the configuration you altered in the file for your web
server changes how the server deals with encrypted connections, you
could even call this a confidentiality attack.

Fabrication

Fabrication attacks involve generating data, processes, communications,
or other similar material with a system. Like the last two attack types,
fabrication attacks primarily affect integrity but could affect availability,

as well. Generating fake information in a database would be a kind of
fabrication attack. You could also generate email, a common method for
propagating malware. If you generated enough additional processes,
network traffic, email, web traffic, or nearly anything else that consumes
resources, you might be conducting an availability attack by rendering
the service that handles such traffic unavailable to legitimate users.

Threats, Vulnerabilities, and Risk

To speak more specifically about attacks, I need to introduce a few new
terms. When you look at how an attack might affect you, you can speak
of it in terms of threats, vulnerabilities, and the associated risk.

Threats

When I spoke of the types of attacks you might encounter earlier in this
chapter, I discussed several types of attacks that could harm your assets
—for instance, the unauthorized modification of data. Ultimately, a
threat is something that has the potential to cause harm. Threats tend
to be specific to certain environments, particularly in the world of
information security. For example, although a virus might be
problematic on a Windows operating system, the same virus will be
unlikely to have any effect on a Linux operating system.

Vulnerabilities

Vulnerabilities are weaknesses, or holes, that threats can exploit to cause
you harm. A vulnerability might involve a specific operating system or
application that you’re running, the physical location of your office
building, a data center that is overpopulated with servers and producing
more heat than its air-conditioning system can handle, a lack of backup
generators, or other factors.

Risk

Risk is the likelihood that something bad will happen. For you to have a
risk in an environment, you need to have both a threat and a
vulnerability that the threat could exploit. For example, if you have a

structure that is made from wood and you light a fire nearby, you have
both a threat (the fire) and a matching vulnerability (the wood
structure). In this case, you most definitely have a risk.

Likewise, if you have the same threat of fire but your structure is
made of concrete, you no longer have a credible risk because your threat
doesn’t have a vulnerability to exploit. You could argue that a
sufficiently hot flame could damage the concrete, but this is a much less
likely event.

We often talk about potential, but unlikely, attacks in computing
environments. The best strategy is to spend your time mitigating the
most likely attacks. If you sink your resources into trying to plan for
every possible attack, however unlikely, you’ll spread yourself thin and
lack protection where you need it the most.

Impact

Some organizations, such as the US National Security Agency (NSA),
add a factor to the threat/vulnerability/risk equation called impact.
Impact takes into account the value of the asset being threatened and
uses it to calculate risk. In the backup tape example, if you consider that
the unencrypted tapes contain only your collection of chocolate chip
cookie recipes, you may not actually have a risk because the data
exposed contains nothing sensitive and you can make additional backups
from the source data. In this case, you might safely say that you have no
risk.

Risk Management

Risk management processes compensate for risks in your environment.
Figure 1-4 shows a typical risk management process at a high level.

Figure 1-4: A risk management process

As you can see, you need to identify your important assets, figure out
the potential threats against them, assess your vulnerabilities, and then
take steps to mitigate these risks.

Identify Assets

One of the first and, arguably, most important parts of the risk
management process is identifying the assets you’re protecting. If you
can’t enumerate your assets and evaluate the importance of each,
protecting them can become a difficult task indeed.

Although this may sound like an exceedingly simple task, it can be a
more complex problem than it might seem on the surface, particularly
in larger enterprises. In many cases, an organization might have various
generations of hardware, assets from acquisitions of other companies
lurking in unknown areas, and scores of unrecorded virtual hosts in use,
any of which may be critical to the continued functionality of the
business.

Once you’ve identified the assets in use, deciding which of them are
critical business assets is another question entirely. Making an accurate
determination of which assets are truly critical to conducting business
will generally require the input of functions that make use of the asset,
those that support the asset itself, and potentially other involved parties
as well.

Identify Threats

After enumerating your critical assets, you can then begin to identify
the threats that might affect them. It’s often useful to have a framework
for discussing the nature of a given threat, and the CIA triad or
Parkerian hexad discussed earlier in this chapter serves nicely for this
purpose.

For instance, let’s apply the Parkerian hexad to examine the threats
you might face against an application that processes credit card
payments.

Confidentiality If you expose data inappropriately, you could
potentially have a breach.

Integrity If data becomes corrupt, you may incorrectly process
payments.

Availability If the system or application goes down, you won’t be
able to process payments.

Possession If you lose backup media, you could potentially have a
breach.

Authenticity If you don’t have authentic customer information,
you may process a fraudulent transaction.

Utility If you collect invalid or incorrect data, that data will have
limited utility.

While this is clearly a high-level pass at assessing threats for this
system, it does point out a few problem areas immediately. You need to
be concerned with losing control of data, maintaining accurate data, and
keeping the system up and running. Given this information, you can
begin to look at areas of vulnerability and potential risk.

Assess Vulnerabilities

When assessing vulnerabilities, you need to do so in the context of
potential threats. Any given asset may have thousands or millions of
threats that could impact it, but only a small fraction of these will be
relevant. In the previous section, you learned about potential threats
against a system that processes credit card transactions.

Let’s look at the issues that were identified and attempt to determine
whether vulnerabilities exist in any of them.

Confidentiality If you expose data inappropriately, you could
have a breach.

Your sensitive data is encrypted at rest and in motion. Your
systems are regularly tested by an external penetration testing
company. This is not a risk.

Integrity If data becomes corrupt, you may incorrectly process
payments.

You carefully validate that payment data is correct as part of the
processing workflow. Invalid data results in a rejected transaction.
This is not a risk.

Availability If the system or application goes down, you can’t
process payments.

You do not have redundancy for the database on the back end of
the payment processing system. If the database goes down, you can’t
process payments. This is a risk.

Possession If you lose backup media, you could have a breach.
Your backup media is encrypted and hand-carried by a courier.

This is not a risk.

Authenticity If you don’t have authentic customer information,
you may process a fraudulent transaction.

Ensuring that valid payment and customer information belongs to
the individual conducting the transaction is difficult. You do not have
a good way of doing this. This is a risk.

Utility If you collect invalid or incorrect data, that data will have
limited utility.

To protect the utility of your data, you checksum credit card
numbers, make sure that the billing address and email address are
valid, and perform other measures to ensure that your data is correct.
This is not a risk.

These examples are a high-level view of the process you’d need to
undertake, but they serve to illustrate the task. From here, you can
again see a few areas of concern, namely, in the areas of authenticity and
availability, and you can begin to evaluate the areas in which you may
have risks.

Assess Risks

Once you’ve identified the threats and vulnerabilities for a given asset,
you can assess the overall risk. As discussed earlier in this chapter, risk is
the conjunction of a threat and a vulnerability. A vulnerability with no

matching threat or a threat with no matching vulnerability does not
constitute a risk.

For example, the following item was both a potential threat and an
area of vulnerability:

Availability If the system or application goes down, you can’t
process payments.

You don’t have redundancy for the database on the back end of
your payment processing system, so if the database goes down, you
won’t be able to process payments.

In this case, you have both a threat and a corresponding
vulnerability, meaning you risk losing ability to process credit card
payments because of a single point of failure on your database back end.
Once you’ve worked through your threats and vulnerabilities in this
manner, you can mitigate these risks.

Mitigate Risks

To mitigate risks, you can put measures in place to account for each
threat. These measures are called controls. Controls are divided into
three categories: physical, logical, and administrative.

Physical controls protect the physical environment in which your
systems sit, or where your data is stored. Such controls also control
access in and out of such environments. Physical controls include
fences, gates, locks, bollards, guards, and cameras, but also systems that
maintain the physical environment, such as heating and air-conditioning
systems, fire suppression systems, and backup power generators.

Although at first glance physical controls may not seem like they’d
be integral to information security, they’re one of the most critical
controls; if you’re not able to physically protect your systems and data,
any other controls that you put in place become irrelevant. If attackers
can physically access your systems, they can steal or destroy them,
rendering them unavailable for your use—in the best case. In the worst
case, attackers will be able to access your applications and data directly
and steal your information and resources or subvert them for their own
use.

Logical controls, sometimes called technical controls, protect the
systems, networks, and environments that process, transmit, and store
your data. Logical controls can include items such as passwords,
encryption, access controls, firewalls, and intrusion detection systems.

Logical controls enable you to prevent unauthorized activities; if
your logical controls are implemented properly and are successful, an
attacker or unauthorized user can’t access your applications and data
without subverting the controls.

Administrative controls are based on rules, laws, policies, procedures,
guidelines, and other items that are “paper” in nature. Administrative
controls dictate how the users of your environment should behave.
Depending on the environment and control in question, administrative
controls can represent differing levels of authority. You may have a
simple rule such as “turn the coffee pot off at the end of the day,” aimed
at avoiding a physical security problem (burning your building down at
night). You may also have a more stringent administrative control, such
as one that requires you to change your password every 90 days.

One important part of administrative controls is the ability to
enforce them. If you don’t have the authority or the ability to ensure
that people comply with your controls, they are worse than useless
because they create a false sense of security. For example, if you create a
policy that says employees can’t use business resources for personal use,
you’ll need to be able to enforce this. Outside of a highly secure
environment, this can be a difficult task. You’d need to monitor
telephone and mobile phone usage, web access, email use, instant
message conversations, installed software, and other potential areas for
abuse. Unless you were willing to devote a great deal of resources to
monitoring these and handling violations of policy, you’d quickly have a
policy that you wouldn’t be able to enforce. The next time you’re
audited and asked to produce evidence of policy enforcement, you’ll
face issues.

Incident Response

If your risk management efforts are not as thorough as you hoped or
you’re blindsided by something entirely unexpected, you can react with
incident response. You should direct your incident response at the items
that you feel are most likely to cause your organization pain. You should
have already identified these as part of your risk management efforts.

As much as possible, you should base your reaction to such incidents
on documented incident response plans, which should be regularly
reviewed, tested, and practiced by those who will be expected to enact
them in the case of an actual incident. You don’t want to wait until an
actual emergency to find out documentation that has been languishing
on a shelf is outdated and refers to processes or systems that have
changed heavily or no longer exist.

The incident response process, at a high level, consists of the
following:

Preparation

Detection and analysis

Containment

Eradication

Recovery

Post-incident activity

I’ll go over these phases in more detail next.

Preparation

The preparation phase of incident response consists of all the activities
you can perform ahead of time to better handle an incident. This
typically involves creating policies and procedures that govern incident
response and handling, conducting training and education for both
incident handlers and those who are expected to report incidents, and
developing and maintaining documentation.

You shouldn’t underestimate the importance of this phase of incident
response. Without adequate preparation, it is extremely unlikely that
the response to an incident will go well or according to your

unpracticed plans. The time to determine what needs to be done, who
needs to do it, and how to do it is not when you’re faced with an
emergency.

Detection and Analysis

The detection and analysis phase is where the action begins. In this
phase, you detect an issue, decide whether it’s actually an incident, and
respond to it appropriately.

Most often, you’ll detect the issue with a security tool or service, like
an intrusion detection system (IDS), antivirus (AV) software, firewall
logs, proxy logs, or alerts from a security information and event
monitoring (SIEM) tool or managed security service provider (MSSP).

The analysis portion of this phase is often a combination of
automation from a tool or service, usually a SIEM tool, and human
judgment. While you can often use some sort of thresholding to say that
a certain number of events in a given amount of time is normal or that a
certain combination of events is not normal (two failed logins, followed
by a success, a password change, and the creation of a new account, for
instance), you’ll often want human intervention at a some point. Human
intervention might include a review of logs output by various security,
network, and infrastructure devices; contact with the party who
reported the incident; and general evaluation of the situation.
(Unfortunately for the incident handler, these situations often occur at 4
PM on a Friday or 2 AM on a Sunday.)

When the incident handler evaluates the situation, that person will
decide whether the issue constitutes an incident, evaluate the criticality
of the incident, and contact any additional resources needed to proceed
to the next phase.

Containment, Eradication, and Recovery

The containment, eradication, and recovery phase is where most of the
work to solve the incident takes place, at least in the short term.

Containment involves taking steps to ensure that the situation doesn’t
cause any more damage than it already has—or at least lessen any

ongoing harm. If the problem involves a malware-infected server
actively being controlled by a remote attacker, this might mean
disconnecting the server from the network, putting firewall rules in
place to block the attacker, and updating signatures or rules on an
intrusion prevention system (IPS) to halt the traffic from the malware.

During eradication, you’ll attempt to remove the effects of the issue
from your environment. In the case of your malware-infected server,
you’ve already isolated the system and cut it off from its command-and-
control network. Now you’ll need to clean the malware from the server
and ensure that it doesn’t exist elsewhere in your environment. This
might involve additional scanning of other hosts in the environment to
ensure that the malware is not present and perhaps examining logs on
the server and network to determine what other systems the infected
server has communicated with. With malware, particularly very new
malware or variants, this can be a tricky task. Whenever you’re in doubt
about whether you’ve truly evicted malware or attackers from your
environment, you should err on the side of caution.

Lastly, you need to recover the state you were in prior to the
incident. Recovery might involve restoring devices or data from backup
media, rebuilding systems, or reloading applications. Again, this can be
a more painful task than it initially seems because your knowledge of the
situation might be incomplete or unclear. You may find that you are
unable to verify that backup media is clean and free or infection or that
the backup media is entirely bad. Application install bits may be
missing, configuration files may not be available, or many other issues
could occur.

Post-Incident Activity

Like preparation, post-incident activity is easy to overlook, but you
should ensure that you don’t neglect it. In the post-incident activity
phase, often referred to as a post-mortem (Latin for “after death”), you
attempt to determine specifically what happened, why it happened, and
what you can do to keep it from happening again. The purpose of this
phase is not to point fingers or place blame (although this does

sometimes happen) but to ultimately prevent or lessen the impact of
future such incidents.

Defense in Depth

Now that you’ve learned about the potential effects of a security breach,
the kinds of attacks you might face, and the strategies for dealing with
these attacks, I’ll introduce you to a method of working toward
preventing these attacks. Defense in depth is a strategy common to both
military maneuvers and information security. The basic concept is to
formulate a multilayered defense that will allow you to still mount a
successful resistance should one or more of your defensive measures fail.

In Figure 1-5, you can see an example of layers you might want to
put in place to defend your assets.

Figure 1-5: Defense in depth

At the least, you would want defenses at the external network,
internal network, host, application, and data levels. Well-implemented
defenses at each layer make it difficult to successfully penetrate your
network and attack your assets directly.

That said, defense in depth is not a magic bullet. No matter how
many layers you put in place or how many defensive measures you place
at each layer, you won’t be able to keep every attacker out for an

indefinite period. Nor is this the goal of defense in depth in an
information security setting. The goal is to place enough defensive
measures between your truly important assets and the attacker so that
you’ll notice that an attack is in progress and have enough time to
prevent it.

An example of such a delaying tactic is requiring employees to
change their passwords every 60 or 90 days. This makes it harder for an
attacker to crack a password in time to still use it.

Using stringent password construction rules is another delaying
tactic. Consider the password “mypassword,” which is ten characters
long and uses only one character set. Using a relatively slow off-the-
shelf system, an attacker might take a week or two to crack this
password. With a purpose-built password cracking system or a botnet,
an attacker might take only an hour or two.

If you use more secure password construction rules and go with a
password along the lines of MyP@ssword1, which is also ten characters
long but uses four character sets, cracking the password would take
thousands of years on purpose-built hardware and upward of several
years for a large botnet.

If you require employees to both change their passwords frequently
and create complex passwords, an attacker won’t be able to crack one in
time to use it.

ENTROPY IN PASSWORDS

The complex password example discussed previously uses a classic
strong password construction scheme, consisting of eight or more
characters and comprising multiple character sets (upper alpha,
lower alpha, numbers, and punctuation). Some would argue it
contains insufficient entropy (unpredictability) to be truly secure
and that you’d be better served with a longer, more entropic, and
more easily remembered password like correcthorsebatterystaple.4

Ultimately, your primary concern should be in constructing
reasonably secure passwords and changing them at regular

intervals.

The layers you include in your defense-in-depth strategy will vary
given the situation and environment you’re defending. As discussed,
from a strictly logical (nonphysical) information security perspective,
you’d want to look at the external network, network perimeter, internal
network, host, application, and data layers as areas to place your
defenses.

You could add complexity to your defensive model by including
other vital layers, such as physical defenses, policies, or user awareness
and training, but I’ll stick with a simpler example for the time being.

Table 1-1 lists some of the defenses you might use for each of the
layers discussed.

Table 1-1: Defense by Layer

Layer Defensive measures

External network DMZ
VPN
Logging
Auditing
Penetration testing
Vulnerability analysis

Network perimeter Firewalls
Proxy
Logging
Stateful packet inspection
Auditing
Penetration testing
Vulnerability analysis

Layer Defensive measures

Internal network IDS
IPS
Logging
Auditing
Penetration testing
Vulnerability analysis

Host Authentication
Antivirus
Firewalls
IDS
IPS
Passwords
Hashing
Logging
Auditing
Penetration testing
Vulnerability analysis

Application SSO
Content filtering
Data validation
Auditing
Penetration testing
Vulnerability analysis

Data Encryption
Access controls
Backups
Penetration testing
Vulnerability analysis

In some cases, a defensive measure appears in multiple layers because
it applies to more than one area. A good example of this is penetration
testing, a method of finding gaps in your security by using some of the
same strategies an attacker would use to break in, which appears in

every layer. I’ll discuss this in greater depth in Chapter 14. You might
want to use penetration testing at every layer of your defense. You can
also see where specific controls may be tied to particular layers, such as
firewalls and proxies at the network perimeter. As with everything else
in the security field, you could argue that some or all of these controls
could exist at layers other than what is shown here, but this is a good
general guideline. As you move through the book, I’ll discuss each of
these areas shown in Table 1-1 in greater detail, as well as the specific
defenses you might want to use for each.

Summary

When discussing issues pertaining to information security, such as
attacks and controls, it’s helpful to have a model by which to do so. This
chapter discussed two potential models: the CIA triad, composed of
confidentiality, integrity, and availability; and the Parkerian hexad,
composed of confidentiality, integrity, availability, possession or control,
authenticity, and utility.

As you look toward preventing attacks, it is also helpful to
understand the general categories of damage that you might see occur
in the event of an attack. Attacks may impact environments through
interception, interruption, modification, or fabrication. Each of these
effects would impact particular areas of the CIA triad.

When discussing specific threats you might face, it’s important to
understand the concept of risk. You only face risk from an attack when a
threat is present and you have a vulnerability that threat can exploit. To
mitigate risk, you use three main types of controls: physical, logical, and
administrative.

Finally, this chapter covered defense in depth, a particularly
important concept in the world of information security. To build
defensive measures using this concept, you put in place multiple layers
of defense to delay an attacker long enough to alert you to the attack
and to allow you to mount a more active defense.

The concepts discussed in this chapter are foundational to
information security. They’re used on a regular basis during normal
information security tasks in many organizations; you might hear
someone talking about breaches of confidentiality, for example, or the
authenticity of a given email message.

Information security is a daily concern for organizations of any size,
particularly those that handle any type of personal information, financial
data, healthcare data, educational data, or other types of information
regulated by the laws of the country in which the organization operates.
When an organization doesn’t invest in information security, the
repercussions can be severe. They might face fines, lawsuits, or even the
inability to continue conducting business if they lose control of critical
or sensitive data. In short, information security is a key component of
the modern business world.

Exercises

Here are some questions to help you review the key concepts of this
chapter:

1. Explain the difference between a vulnerability and a threat.

2. What are six items that might be considered logical controls?

3. What term might you use to describe the usefulness of data?

4. Which category of attack is an attack against confidentiality?

5. How do you know at what point you can consider your
environment to be secure?

6. Using the concept of defense in depth, what layers might you use
to secure yourself against someone removing confidential data
from your environment on a USB flash drive?

7. Based on the Parkerian hexad, what principles are affected if you
lose a shipment of encrypted backup tapes that contain personal
and payment information for your customers?

8. If the web servers in your environment are based on Microsoft’s
Internet Information Services (IIS) and a new worm is discovered

that attacks Apache web servers, what do you not have?

9. If you develop a new policy for your environment that requires you
to use complex and automatically generated passwords that are
unique to each system and are a minimum of 30 characters in
length, such as “!Qa4(j0nO$&xn1%2AL34ca#!Ps321$,” what will
be adversely impacted?

10. Considering the CIA triad and the Parkerian hexad, what are the
advantages and disadvantages of each model?

2

IDENTIFICATION AND AUTHENTICATION

When you’re developing security measures, whether they’re specific
mechanisms or entire infrastructures, identification and authentication
are key concepts. In short, identification makes a claim about what
someone or something is, and authentication establishes whether this
claim is true. You can see such processes taking place daily in a wide
variety of ways.

One common example of an identification and authentication
transaction is the use of payment cards that require a personal
identification number (PIN). When you swipe the magnetic strip on the
card, you’re asserting that you’re the person indicated on the card. At
this point, you’ve given your identification, but nothing more. When
you’re prompted to enter the PIN associated with the card, you’re
completing the authentication portion of the transaction, proving
you’re the legitimate cardholder.

Some of the identification and authentication methods that we use
daily are particularly fragile, meaning they depend largely on the
honesty and diligence of those involved in the transaction. If you show
your ID card to buy alcohol, for example, you’re asking people to trust

that your ID is genuine and accurate; they can’t authenticate it unless
they have access to the system that maintains the ID in question. We
also depend on the competence of the person or system performing the
authentication; they must be capable not only of performing the act of
authentication but also of detecting false or fraudulent activity.

You can use several methods for identification and authentication,
from requiring simple usernames and passwords to implementing
purpose-built hardware tokens that serve to establish your identity in
multiple ways. In this chapter, I’ll discuss several of these methods and
explore their uses.

Identification

Identification, as you just learned, is simply an assertion of who we are.
This may include who we claim to be as people, who a system claims to
be over the network, or who the originating party of an email claims to
be. You’ll see some methods for determining identity and examine how
trustworthy those methods are.

Who We Claim to Be

Who we claim to be is a tenuous concept at best. We can identify
ourselves by our full names, shortened versions of our names,
nicknames, account numbers, usernames, ID cards, fingerprints, or
DNA samples. Unfortunately, with a few exceptions, such methods of
identification are not unique, and even some of the supposedly unique
methods of identification, such as fingerprints, can be duplicated.

Who we claim to be can, in many cases, be subject to change. For
instance, women often change their last names upon getting married. In
addition, we can generally change logical forms of identification—such
as account numbers or usernames—easily. Even physical identifiers,
such as height, weight, skin color, and eye color, can change. One of the
most crucial factors to realize is that a claim of identity alone is not
enough.

Identity Verification

Identity verification is a step beyond identification, but it’s still a step
short of authentication, which I’ll discuss in the next section. When
you’re asked to show a driver’s license, Social Security card, birth
certificate, or other similar form of identification, this is generally for
identity verification, not authentication. It’s the rough equivalent of
someone claiming the identity John Smith; you asking if the person is
indeed John Smith and being satisfied with an answer of “Sure, I am”
from the person (plus a little paperwork).

We can take the example a bit further and validate the form of
identification (say, a passport) against a database holding an additional
copy of the information that it contains, matching the photograph and
physical specifications with the person standing in front of us. This may
get us a bit closer to ensuring we’ve correctly identified the person, but
it still doesn’t qualify as authentication; we may have validated the status
of the ID itself, and we know that the person meets the general
specifications of the person it was originally issued to, but we’ve taken
no steps to prove that the person is really the right one. The more than
we trend toward verification and away from authentication, the weaker
our controls are.

Computer systems use identity verification, too. When you send an
email, the identity you provide is taken to be true; the system rarely
takes any additional steps to authenticate you. Such gaps in security
contribute to the enormous amount of spam traffic, which Cisco’s Talos
Intelligence Group estimated to have accounted for approximately 85
percent of all emails sent from mid-2017 to mid-2018.1

Falsifying Identification

As I’ve discussed, methods of identification are subject to change. As
such, they are also subject to falsification. Minors often use fake IDs to
get into bars or nightclubs, while criminals and terrorists might use
them for a variety of more nefarious tasks. You could use some methods
of identification, such as birth certificates, to gain additional forms of

identification, such as Social Security cards or driver’s licenses, thus
strengthening a false identity.

Identity theft based on falsified information is a major concern today;
identity thieves stole an estimated $16.8 billion from US consumers in
2017.2 This type of attack is unfortunately common and easy to execute.
Given a minimal amount of information—usually a name, address, and
Social Security number are sufficient—it’s possible to impersonate
someone just enough to be able to conduct a variety of transactions in
their name, such as opening a line of credit. Such crimes occur because
many activities lack authentication requirements. Although most people
think identity verification is sufficient, verification is easy to circumvent
by using falsified forms of identification.

Many of the same difficulties exist in computer systems and
environments. For example, it’s entirely possible to send an email from a
falsified email address. Spammers use this tactic on a regular basis. I’ll
address such issues at greater length in Chapter 9.

Authentication

In information security, authentication is the set of methods used to
establish whether a claim of identity is true. Note that authentication
does not decide what the party being authenticated is permitted to do;
this is a separate task, known as authorization. I’ll discuss authorization
in Chapter 3.

Factors

There are several approaches to authentication: something you know,
something you are, something you have, something you do, and where
you are. These approaches are known as factors. When you’re
attempting to authenticate a claim of identity, you’ll want to use as
many factors as possible. The more factors you use, the more positive
your results will be.

Something you know, a common authentication factor, includes
passwords or PINs. However, this factor is somewhat weak, because if

the information the factor depends on is exposed, your authentication
method may no longer be unique.

Something you are is a factor based on the relatively unique physical
attributes of an individual, often referred to as biometrics. Although
biometrics can include simple attributes such as height, weight, hair
color, or eye color, these aren’t usually distinctive enough to make very
secure identifiers. Complex identifiers such as fingerprints, iris or retina
patterns, or facial characteristics are more common. These are a bit
stronger than, say, a password, because forging or stealing a copy of a
physical identifier is somewhat more difficult, although not impossible.
There is some question as to whether biometrics truly count as an
authentication factor or whether they only constitute verification. I’ll
discuss this again later in this chapter, when I cover biometrics in
greater depth.

Something you have is a factor generally based on a physical
possession, although it can extend into some logical concepts. Common
examples are automatic teller machine (ATM) cards, state or federally
issued identity cards, or software-based security tokens, as shown in
Figure 2-1.3 Some institutions, such as banks, have begun to use access
to logical devices, such as cell phones or email accounts, as methods of
authentication, as well.

Figure 2-1: Sending a security token to a mobile phone is a common authentication method.

This factor can vary in strength depending on the implementation. If
you wanted to use a security token sent to a device that doesn’t belong
to you, you’d need to steal the device to falsify the authentication
method. On the other hand, if the security token was sent to an email
address, it would be much easier to intercept, and you’d have a measure
of considerably less strength.

Something you do, sometimes considered a variation of something you
are, is a factor based on the actions or behaviors of an individual. This
may include an analysis of the individual’s gait or handwriting or of the
time delay between keystrokes as he or she types a passphrase. These
factors present a strong method of authentication and are difficult to

falsify. They do, however, have the potential to incorrectly reject
legitimate users at a higher rate than some of the other factors.

Where you are is a geographically based authentication factor. This
factor operates differently than the other factors, as it requires a person
to be present in a specific location. For example, when changing an
ATM PIN, most banks will require you to go into a branch, at which
point you will also be required to present your identification and
account number. If the bank allowed the PIN to be reset online, an
attacker could change your PIN remotely and proceed to clean out your
account. Although potentially less useful than some of the other factors,
this factor is difficult to counter without entirely subverting the system
performing the authentication.

Multifactor Authentication

Multifactor authentication uses one or more of the factors discussed in the
preceding section. When you’re using only two factors, this practice is
also sometimes called two-factor authentication.

Let’s return to the ATM example because it illustrates multifactor
authentication well. In this case, you use something you know (your
PIN) and something you have (your ATM card). Your ATM card serves
as both a factor for authentication and a form of identification. Another
example of multifactor authentication is writing checks. In this case,
you’re using something you have (the checks themselves) and something
you do (signing them). Here, the two factors involved in writing a check
are rather weak, so you sometimes see a third factor—a fingerprint—
used with them.

Depending on the factors selected, you can assemble stronger or
weaker multifactor authentication schemes particular to each situation.
In some cases, although certain methods may be more difficult to
defeat, they’re not practical to implement. For example, DNA makes
for a strong method of authentication but isn’t practical in most
situations. In Chapter 1, I said that your security should be proportional
to what you’re protecting. You certainly could install iris scanners on

every credit card terminal, but this would be expensive, impractical, and
potentially upsetting to customers.

Mutual Authentication

Mutual authentication is an authentication mechanism in which both
parties in a transaction authenticate each other. These parties are
typically software-based. In the standard, one-way authentication
process, the client authenticates to the server. In mutual authentication,
not only does the client authenticate to the server, but the server
authenticates to the client. Mutual authentication often relies on digital
certificates, which I’ll discuss in Chapter 5. Briefly, both the client and
the server would have a certificate to authenticate the other.

In cases where you don’t perform mutual authentication, you leave
yourself open to impersonation attacks, often referred to as man-in-the-
middle attacks. In a man-in-the-middle attack, the attacker inserts
himself between the client and the server. The attacker then
impersonates the server to the client and the client to the server, as
shown in Figure 2-2, by circumventing the normal pattern of traffic and
then intercepting and forwarding the traffic that would normally flow
directly between the client and the server.

Figure 2-2: A man-in-the-middle attack

This is typically possible because the attacker needs to subvert or
falsify authentication only from the client to the server. If you
implement mutual authentication, this becomes a considerably more
difficult attack because the attacker would have to falsify two different
authentications.

You can also combine mutual authentication with multifactor
authentication, although the latter generally takes place only on the
client side. Multifactor authentication from the server back to the client
would be not only technically challenging but also impractical in most
environments because it would involve some technical heavy-lifting on
the client side, potentially on the part of the user. You’d likely lose a
significant amount of productivity.

Common Identification and Authentication Methods

I’ll conclude this discussion by exploring three common identification
and authentication methods in detail: passwords, biometrics, and
hardware tokens.

Passwords

Passwords are familiar to most us who use computers regularly. When
combined with a username, a password will generally allow you access
to a computer system, an application, a phone, or a similar device.
Although they’re only a single factor of authentication, passwords can
represent a relatively high level of security when constructed and
implemented properly.

People often describe certain passwords as being strong, but a better
descriptive term might be complex. If you construct a password that uses
lowercase letters only and is eight characters long, you can use a
password-cracking utility to crack it quickly, as discussed in Chapter 1.
Adding character sets to the password makes it increasingly harder to
figure out. If you use uppercase letters, lowercase letters, numbers, and
symbols, you’ll end up with a password that is potentially more difficult
to remember, such as $sU&qw!3, but much harder to crack.

In addition to constructing strong passwords, you also need to
practice good password hygiene. Don’t write your password down and
post it under your keyboard or on your monitor; doing so completely
defeats the purpose of having a password in the first place. Applications
called password managers exist to help us manage all the logins and
passwords we have for different accounts, some as locally installed
software and others as web or mobile device applications. There are
many arguments for and against such tools; some people think keeping
all of your passwords in one place is a bad idea, but when used carefully,
they can help you maintain good password hygiene.

Another common problem is the manual synchronization of
passwords—in short, using the same password everywhere. If you use
the same password for your email, for your login at work, and for your
online knitting discussion forum, you’re putting the security of all the
accounts in the hands of those system owners. If any one of them is
compromised, all of your accounts become vulnerable; all an attacker
needs to do to access the others is look up your account name on the
internet to find your other accounts and log in using your default
password. By the time the attacker gets into your email account, the
game is over because an attacker can generally use it reset account
credentials for any other accounts you have.

Biometrics

Although some biometric identifiers may be more difficult to falsify
than others, this is only because of the limitations of today’s technology.
At some point in the future, we’ll need to develop more robust
biometric characteristics to measure or else stop using biometrics as an
authentication mechanism.

Using Biometrics

Biometrics-equipped devices are becoming increasingly common and
inexpensive. You can find a wide selection of them for less than $20. It
pays to research such devices carefully before you depend on them for
security, as some of the cheaper versions are easy to bypass.

You can use biometric systems in two ways. You can use them to
verify the identity claim someone has put forth, as discussed earlier, or
you can reverse the process and use biometrics as a method of
identification. This process is commonly used by law enforcement
agencies to identify the owner of fingerprints left on various objects. It
can be a time-consuming effort, considering the sheer size of the
fingerprint libraries held by such organizations. To use a biometric
system in either manner, you need to put the user through some sort of
enrollment process. Enrollment involves recording the user’s chosen
biometric characteristic—for instance, making a copy of a fingerprint—
and saving it in a system. Processing the characteristic may also include
noting elements that appear at certain parts of the image, known as
minutiae (Figure 2-3).

Figure 2-3: Biometric minutiae

You can use the minutiae later to match the characteristic to the user.

Characteristics of Biometric Factors

Biometric factors are defined by seven characteristics: universality,
uniqueness, permanence, collectability, performance, acceptability, and
circumvention.4

Universality means you should be able to find your chosen biometric
characteristic in the majority of people you expect to enroll in the
system. For instance, although you might be able to use a scar as an
identifier, you can’t guarantee that everyone will have a scar. Even if you
choose a common characteristic, such as a fingerprint, you should take
into account the fact that some people may not have an index finger on
their right hand and be prepared to compensate for this.

Uniqueness is a measure of how unique a characteristic is among
individuals. For example, if you choose to use height or weight as a
biometric identifier, you’d stand a good chance of finding several people
in any given group who have the same height or weight. You should try
to select characteristics with a high degree of uniqueness, such as DNA
or iris patterns, but even these could be duplicated, whether
intentionally or otherwise. For example, identical twins have the same
DNA, and an attacker could replicate a fingerprint.

Permanence tests how well a characteristic resists change over time
and with advancing age. If you choose a factor that can easily vary, such
as height, weight, or hand geometry, you’ll eventually find yourself
unable to authenticate a legitimate user. It’s better to use factors such as
fingerprints, which are unlikely to change without deliberate action.

Collectability measures how easy it is to acquire a characteristic. Most
commonly used biometrics, such as fingerprints, are relatively easy to
acquire, which is one reason they are common. On the other hand, a
DNA sample is more difficult to acquire because the user must provide
a genetic sample to enroll and to authenticate again later.

Performance measures how well a given system functions based on
factors such as speed, accuracy, and error rate. I’ll discuss the
performance of biometric systems at greater length later in this section.

Acceptability is a measure of how acceptable the characteristic is to the
users of the system. In general, systems that are slow, difficult to use, or
awkward to use are less likely to be acceptable to the user.5 Systems that

require users to remove their clothes, touch devices that have been
repeatedly used by others, or provide tissue or bodily fluids are unlikely
to have a high degree of acceptability.

Circumvention describes how easy it is to trick a system by using a
falsified biometric identifier. The classic example of a circumvention
attack against the fingerprint as a biometric identifier is the “gummy
finger.” In this type of attack, a fingerprint is lifted from a surface and
used to create a mold with which the attacker can cast a positive image
of the fingerprint in gelatin. Some biometric systems have secondary
features specifically designed to defeat such attacks by measuring skin
temperature, pulse, or pupillary response.

Measuring Performance

There are many ways to measure the performance of a biometric
system, but a few primary metrics are particularly important. The false
acceptance rate (FAR) and false rejection rate (FRR) are two of these.6 FAR
measures how often you accept a user who should be rejected. This is
also called a false positive. FRR measures how often we reject a legitimate
user and is sometimes called a false negative.

You want to avoid both of these situations in excess. You should aim
for a balance between the two error types, referred to as an equal error
rate (EER). If you plot both the FAR and the FRR on a graph, as I’ve
done in Figure 2-4, the EER marks the point where the two lines
intersect. We sometimes use EER as a measure of the accuracy of
biometric systems.

Figure 2-4: The equal error rate is the intersection of the false acceptance rate and false

rejection rate.

Flaws in Biometric Systems

Biometric systems are prone to several common issues. As I mentioned
when discussing circumvention, it’s easy to forge some biometric
identifiers. Moreover, once they’re forged, it’s hard to re-enroll a user in
the system. For example, if you enroll a user with both index fingers and
those fingerprints get compromised, you could remove these from the
system and enroll two of their other fingers. However, if you’ve already
enrolled all of their fingers in the system, you’d have no means of re-
enrolling them using fingers at all. Depending on the system in
question, you may be able to select a different set of minutiae for the
same identifier, but this avoids the point of the discussion, which is that
biometric identifiers are finite. This issue became tangible in 2015,
when an attacker hacked the US Office of Personnel Management and
stole the fingerprint records of 5.6 million federal employees holding
security clearances.7

You also face possible privacy issues in the use of biometrics. When
you’re enrolled in a biometric system, you’re essentially giving away a
copy of the identifier, whether it’s a fingerprint, iris pattern, or DNA
sample. Once such an item has been entered into a computer system,
you have little, if any, control over what happens to it. We can hope that
once you’re no longer associated with the institution in question, the
institution would destroy such materials, but you have no way to
guarantee this. Particularly in the case of DNA sampling, the
repercussions of surrendering genetic material could affect you for the
rest of your life.

Hardware Tokens

A standard hardware token (Figure 2-5) is a small device, typically in the
general form factor (size and shape) of a credit card or keychain fob.8

The simplest hardware tokens look identical to universal serial bus
(USB) flash drives and contain a certificate or unique identifier. They’re
often called dongles. More complex hardware tokens incorporate liquid-
crystal displays (LCDs), keypads for entering passwords, biometric
readers, wireless devices, and additional features to enhance security.

Figure 2-5: A hardware token

Many hardware tokens contain an internal clock that generates a
code based on the device’s unique identifier, an input PIN or password,
and other potential factors. Usually, the code is output to a display on
the token and changes on a regular basis, often every 30 seconds. The
infrastructure used to keep track of these tokens can predict what the
proper output will be at any given time in order to authenticate the user.

The simplest kind of hardware token represents only the something
you have factor and is thus susceptible to theft and potential use by a
knowledgeable criminal. Although these devices represent an increased
level of security for the user’s accounts and aren’t generally useful
without the associated account credentials, you do need to remember to
safeguard them.

More sophisticated hardware tokens could represent the something
you know or something you are factors, as well. They might require a
PIN or fingerprint, which enhances the security of the device
considerably; in addition to getting the hardware token, an attacker
would need to either subvert the infrastructure that uses the device or

extract the something you know or something you are factor from the
legitimate owner of the device.

Summary

Identification is an assertion of the identity of some party, whether it be
a person, process, system, or other entity. Identification is only a claim
of identity; it doesn’t say anything about any privileges that might be
associated with the identity.

Authentication is the process used to validate whether the claim of
identity is correct. It’s different than verification, which is a much
weaker way of testing someone’s identity.

When you perform authentication, you can use several factors. The
main factors are something you know, something you are, something
you have, something you do, and where you are. An authentication
mechanism that includes more than one factor is known as multifactor
authentication. Using multiple factors gives you a much stronger
authentication mechanism than you might otherwise have.

The common set of tools used for authentication includes passwords,
tokens, and biometric identifiers. Each of these has its own set of unique
challenges that you will need to deal with when you are implementing
them as part of your set of security controls.

In the next chapter, I’ll discuss the steps that take place after
identification and authentication: authorization and access control.

Exercises

1. What is the difference between verification and authentication of
an identity?

2. How do you measure the rate at which you fail to authenticate
legitimate users in a biometric system?

3. What do you call the process in which the client authenticates to
the server and the server authenticates to the client?

4. A key would be described as which type of authentication factor?

5. What biometric factor describes how well a characteristic resists
change over time?

6. If you’re using an identity card as the basis for your authentication
scheme, what steps might you add to the process to allow you to
move to multifactor authentication?

7. If you’re using an eight-character password that contains only
lowercase characters, would increasing the length to ten characters
represent any significant increase in strength? Why or why not?

8. Name three reasons why an identity card alone might not make an
ideal method of authentication.

9. What factors might you use when implementing a multifactor
authentication scheme for users who are logging onto workstations
that are in a secure environment and are used by more than one
person?

10. If you’re developing a multifactor authentication system for an
environment where you might find larger-than-average numbers of
disabled or injured users, such as a hospital, which authentication
factors might you want to use or avoid? Why?

3

AUTHORIZATION AND ACCESS CONTROLS

After you’ve received a party’s claim of identity and established whether
that claim is valid, as discussed in Chapter 2, you have to decide
whether to allow the party access to your resources. You can achieve this
with two main concepts: authorization and access control. Authorization
is the process of determining exactly what an authenticated party can
do. You typically implement authorization using access controls, which are
the tools and systems you use to deny or allow access.

You can base access controls on physical attributes, sets of rules, lists
of individuals or systems, or other, more complex factors. When it
comes to logical resources, you’ll probably find simple access controls
implemented in everyday applications and operating systems and
elaborate, multilevel configurations in military or government
environments. In this chapter, you’ll learn about access controls in more
detail and look at some ways of implementing them.

What Are Access Controls?

Although the term access controls may sound technical, like it belongs
only in high-security computing facilities, we all deal with access
controls daily.

When you lock or unlock the doors of your house, you’re using a
form of physical access control, based on your keys. (Your keys are
something you have, as discussed in Chapter 2; in this case, they
function as methods of both authentication and authorization.)

When you start your car, you’re also likely to use a key. For some
newer cars, your key may even include an extra layer of security
with radio-frequency identification (RFID) tags, which are
certificate-like identifiers stored on the key.

Upon reaching your place of employment, you might use a badge
(again, something you have) to enter the building.

When you sit down in front of your computer at work and enter
your password (something you know), you’re authenticating
yourself and using a logical access control system to access the
resources for which you’ve been given permission.

Most of us regularly encounter multiple implementations like these
while working, going to school, and performing the other activities that
make up our day.

You’ll probably want to use access controls to carry out four basic
tasks: allowing access, denying access, limiting access, and revoking
access. We can describe most access control issues or situations using
these four actions.

Allowing access is giving a party access to a given resource. For
example, you might want to give a user access to a file, or you may want
to give an entire group of people access to all the files in a given
directory. You might also allow someone physical access to a resource by
giving your employees a key or badge to your facility.

Denying access is the opposite of granting access. When you deny
access, you are preventing a given party from accessing the resource in
question. You might deny access to a person attempting to log onto a
machine based on the time of day, or you might block unauthorized

individuals from entering the lobby of your building beyond business
hours. Many access control systems are set to deny by default.

Limiting access is allowing only some degree of access to your
resources. In a physical security scheme, you might have a master key
that can open any door in the building, an intermediate key that can
open only a few doors, and a low-level key that can open only one door.
You might also implement limited access when you’re using applications
that may be exposed to attack-prone environments, like web browsers
used on the internet.

One way to limit access is by running sensitive applications in
sandboxes, which are isolated environments containing a set of resources
for a given purpose (Figure 3-1).

Figure 3-1: A sandbox is an isolated environment that protects a set of resources.

We use sandboxes to prevent their contents from accessing files,
memory, and other system resources with which they shouldn’t be
interacting. Sandboxes can be useful for containing things that you can’t
trust, such as code from public websites. One example of a sandbox is
the Java Virtual Machine (JVM) used to run programs written in the
Java programming language. The JVM is specifically constructed to
protect users against potentially malicious downloaded software.

Revoking access is taking access away from a party after you’ve granted
it. Being able to revoke access is vital to the security of your system. If
you were, for instance, to fire an employee, you’d want to revoke any
accesses they might have, including access to their email account, your
virtual private network (VPN), and your facility. When you’re working
with computer resources, it may be particularly important to be able to
revoke access to a given resource quickly.

Implementing Access Controls

The two main methods of implementing access controls are with access
control lists and capabilities. Both of these methods have strengths and
weaknesses, as well as different ways of carrying out the four basic tasks
we covered earlier.

Access Control Lists

Access control lists (ACLs), often pronounced “ackles,” are lists containing
information about what kind of access certain parties are allowed to
have to a given system. We often see ACLs implemented as part of
application software or operating systems and in the firmware of some
hardware appliances, such as network infrastructure devices. We may
even see ACL concepts extend into the physical world, through software
systems that control physical resources, such as badge readers for door
control systems. According to the ACL in Figure 3-2, Alice is allowed
access to the resource, while Bob is specifically denied access.

Figure 3-2: A simple access control list

This may seem like a simple concept, but in larger implementations,
ACLs can become quite complex. Organizations commonly use ACLs
to control access in the file systems on which their operating systems
run and to control the flow of traffic in the networks to which their
systems are attached. You’ll learn about these two types of ACLs in this
chapter.

File System ACLs

The ACLs in most file systems will have three types of permissions (the
authorizations that allow access to specific resources in a specific
manner): read, which allows a user to access the contents of a file or
directory; write, which allows a user to write to a file or directory; and
execute, which allows a user to execute the contents of the file if that file
contains either a program or a script capable of running on the system
in question.

A file or directory may also have multiple ACLs attached to it. In
UNIX-like operating systems, for instance, a given file might have
separate access lists for specific users or groups. The system might give
a certain individual user (like a specific developer) specific read, write,
and execute permissions; a certain group of users (like the entire
developer group) different read, write, and execute permissions; and any
other authenticated users a third set of read, write, and execute
permissions. On Linux-based operating systems, you can view these
three sets of permissions by issuing the following command:

ls -la

Figure 3-3 shows these permissions displayed in the system.

Figure 3-3: File permissions on a UNIX-like operating system

Each line in Figure 3-3 represents the permissions for an individual
file. The permissions for the first file, ucf.conf, are displayed as follows:

- r w - r - - r - -

This may seem a bit cryptic. To interpret the permissions, it’ll help
to divide them into the following sections:

- | r w - | r - - | r - -

The first character generally represents the file type: - represents a
regular file, and d represents a directory. The second segment represents
the user who owns the file’s permissions and is set to r w -, meaning that
the user can read and write to the file but not execute it.

The third segment, the group permissions, is set to r - -, meaning
that members of the group that was given ownership of the file can read
it but not write or execute it. The last segment, other, is also set to r - -,
meaning that anyone who is not the user who owns the file or in the

group that owns the file can also read it but not write or execute it. In
Linux, the user permissions apply to a single user only, and the group
permissions apply to a single group.

By using sets of file permissions, you can control access to the
operating systems and applications that use your file system. Most file
systems use systems that are similar to the one described for assigning
permissions.

Network ACLs

If you look at the variety of activities that take place on networks, both
private and public, you’ll notice ACLs regulating the activity. In
network ACLs, you typically filter access based on identifiers used for
network transactions, such as Internet Protocol (IP) addresses, Media
Access Control addresses, and ports. You can see such ACLs at work in
network infrastructure such as routers, switches, and firewall devices, as
well as in software firewalls, websites like Facebook and Google, email,
and other forms of software.

Permissions in network ACLs tend to be binary in nature; rather
than read, write, and execute, they generally either allow or deny some
activity. Instead of users, network ACLs typically grant permissions to
traffic. For example, when you set up the ACL, you use your chosen
identifier or identifiers to dictate which traffic you’re referring to and
whether the traffic is allowed. It’s best to rely on multiple identifiers to
filter traffic, for reasons that will become clear shortly.

Media Access Control address filtering is one of the simplest forms of
network-oriented ACLs. Media Access Control addresses are unique
identifiers hard-coded into each network interface in a given system.

Unfortunately, the software settings in most operating systems can
override a network interface’s Media Access Control address. Changing
this address is easy, so it’s not a good choice for a unique identifier of a
device on the network.

You could use IP addresses instead. Theoretically, an IP address is a
unique address assigned to each device on any network that uses the
Internet Protocol for communication. You can filter based on individual

addresses or an entire range of IP addresses. For instance, you could
allow the IP addresses 10.0.0.2 through 10.0.0.10 to pass traffic but
deny any traffic from 10.0.0.11 and higher. Unfortunately, like Media
Access Control addresses, you can falsify IP addresses, and they’re not
unique to a network interface. Additionally, IP addresses issued by
internet service providers are subject to frequent change, so making IP
addresses the sole basis for filtering is a shaky prospect at best.

BLACK HOLES

Some organizations, such as those that operate web servers, mail
servers, and other services exposed to the internet, apply large-
scale filtering to block out known attacks, spammers, and other
undesirable traffic. Such filtering might include dropping traffic
from individual IP addresses, ranges of IP addresses, or the entire
IP spaces of large organizations, internet service providers, or even
entire countries. This practice is commonly called blackholing,
because from the user’s perspective, any traffic sent to filtered
destinations appears to have vanished into a black hole.

A third way of filtering traffic is by the port used to communicate
over the network. The network port is a numerical designation for one
side of a connection between two devices, and we use them to identify
the application to which traffic should be routed. Many common
services and applications use specific ports. For instance, FTP uses ports
20 and 21 to transfer files, Internet Message Access Protocol (IMAP)
uses port 143 for managing email, and Secure Shell (SSH) uses port 22
to manage remote connections to systems. There are many more
examples, since there are 65,535 ports in all.

You can control the use of many applications over the network by
allowing or denying traffic originating from or sent to any ports that
you care to manage. However, like Media Access Control and IP
addresses, the specific ports used for applications are conventions, not

absolute rules. You can, with relative ease, change the ports that
applications use to entirely different ones.

As you just saw, if you use any single attribute to construct a network
ACL, you’ll likely encounter a variety of issues. If you’re using IP
addresses, your attribute might not necessarily be unique. If you’re
using Media Access Control addresses, your attribute will be easy to
alter, and if you use ports, you’re banking on conventions rather than
rules.

When you combine several attributes, you begin to arrive at a more
secure technique. For example, it’s common to use both an IP address
and a port, a combination typically called a socket. Using sockets, you
can allow or deny network traffic from one or more IP addresses with
one or more applications on your network in a workable fashion.

You can also construct ACLs to filter based on a wide variety of other
criteria. In some cases, you want to allow or deny traffic based on more
specific information, such as the content of an individual packet or a
related series of packets. Using such techniques, you could, for example,
filter out traffic related to networks used to illegally share copyrighted
material.

Weaknesses of ACL Systems

Systems that use ACLs to manage permissions are vulnerable to a type
of attack called the confused deputy problem. This problem occurs when
the software with access to a resource (the deputy) has a greater level of
permission to access the resource than the user who is controlling the
software. If you can trick the software into misusing its greater level of

authority, you can potentially carry out an attack.1

Several attacks take practical advantage of the confused deputy
problem. These often involve tricking the user into taking some action
when they really think they are doing something else entirely. Many of
these attacks are client-side attacks, which take advantage of weaknesses
in applications running on the user’s computer. These attacks might be
code sent through the web browser and executed on the local machine,
malformed PDF files, or images and videos with attack code embedded.

In the past several years, software vendors have become increasingly
aware of such attacks and have begun building defensive measures into
their software, but new attacks appear on a regular basis. Two of the
more common attacks that exploit the confused deputy problem are
cross-site request forgery (CSRF) and clickjacking.

CSRF is an attack that misuses the authority of the browser on the
user’s computer. If the attacker knows of, or can guess, a website that
has already authenticated the user—perhaps a common site such as
Amazon.com—the attacker can embed a link in a web page or HTML-
based email, generally to an image hosted from a site controlled by the
attacker. When the target’s browser attempts to retrieve the image in
the link, it also executes the additional commands the attacker has
embedded in it, often in a fashion completely invisible to the target.

In the example in Figure 3-4, the attacker has embedded a request to
transfer funds from an account at BankCo to the attacker’s offshore
account. As the BankCo server sees the request as coming from an
authenticated and authorized user, it proceeds with the transfer. In this
case, the confused deputy is the bank server.

Figure 3-4: An example of a CSRF attack

Clickjacking, also known as user interface redressing, is a particularly
sneaky and effective client-side attack that takes advantage of some of
the page rendering features that are available in newer web browsers. To
carry out a clickjacking attack, the attacker must legitimately control or

http://amazon.com/

have taken control of some portion of a website. The attacker constructs
or modifies the site by placing an invisible layer over something the
client would normally click. This causes the client to execute a
command that’s different than the one they think they’re performing.
You can use clickjacking to trick the client into making purchases,
changing permissions in their applications or operating systems, or
performing other unwanted activities.

Capabilities

Whereas ACLs define permissions based on a given resource, an
identity, and a set of permissions, all generally held in a file of some
sort, you can also define permissions based on a user’s token, or key,
otherwise known as a capability. Although the token isn’t a physical
object in most cases, you can think of it as the badge you might use to
open the door of a building. The building has one door, and many
people have a token that will open it, but each person has a different
level of access. One person might be able to access the building only
during business hours on weekdays, while another person may have
permission to enter the building at any time of day on any day of the
week.

In capability-based systems, the right to access a resource is based
entirely on possession of the token, rather than who possesses it. If you
were to give your badge to someone else, he would be able to use it to
access the building with whatever set of permissions you have. When it
comes to logical assets, applications can share their token with other
applications.

If you were to use capabilities instead of ACLs to manage
permissions, you could protect against confused deputy attack. Neither
of the attacks you learned about earlier, CSRF and clickjacking, would
be possible, because the attacker wouldn’t be able to misuse the
authority of the user unless they had access to the user’s token.

Access Control Models

An access control model is a way of determining who should be allowed
access to what resources. There are quite a few different access control
models out there. The most common ones, covered here, include
discretionary access control, mandatory access control, rule-based
access control, role-based access control, attribute-based access control,
and multilevel access control.

Discretionary Access Control

In the discretionary access control (DAC) model, the owner of the resource
determines who gets access to it and exactly what level of access they
can have. You can see DAC implemented in most operating systems; if
you decide to create a network share in a Microsoft operating system,
for instance, you’re in charge of people’s access to it.

Mandatory Access Control

In the mandatory access control (MAC) model, the owner of the resource
doesn’t get to decide who gets to access it. Instead, a separate group or
individual has the authority to set access to resources. You can often find
MAC implemented in government organizations, where access to a
given resource is largely dictated by the sensitivity label applied to it
(secret or top secret, for example), by the level of sensitive information
the individual is allowed to access (perhaps only secret), and by whether
the individual actually has a need to access the resource (a concept
called the principle of least privilege, discussed in the box).

THE PRINCIPLE OF LEAST PRIVILEGE

The principle of least privilege dictates that you should give a
party only the bare minimum level of access it needs to perform its
functionality. For example, someone working in an organization’s
sales department should not need access to data in the
organization’s internal human resources system to do their job.

Violation of the principle of least privilege is at the heart of many
of the security problems we face today.

One of the more common ways the principle of least privilege
gets improperly implemented is in the permissions given to
operating system user accounts. In Microsoft operating systems in
particular, you’ll often find that casual users, who are performing
tasks such as creating documents in word processors and
exchanging emails, are configured with administrative access,
allowing them to carry out any task that the operating system
allows.

Because of this, whenever the over-privileged user opens an
email attachment containing malware or encounters a website that
pushes attack code to the client computer, these attacks have free
rein on the system. The attacker can simply turn off anti-malware
tools, install any additional attack tools they care to, and proceed
with completely compromising the system.

Rule-Based Access Control

Rule-based access control allows access according to a set of rules defined
by the system administrator. If the rule is matched, access to the
resource will be granted or denied accordingly.

A good example of rule-based access control is an ACL used by a
router. You might see a rule specifying that traffic coming from source
A to destination B on port C is allowed. Any other traffic between the
two devices would be denied.

Role-Based Access Control

The role-based access control (RBAC) model allows access based on the
role of the individual being granted access. For example, if you have an
employee whose only role is to enter data into an application, RBAC
would mandate that you allow the employee access to only that
application.

If you have an employee with a more complex role—customer
service for an online retailer, perhaps—the employee’s role might
require him to have access to information about customers’ payment
status and information, shipping status, previous orders, and returns. In
this case, RBAC would grant him considerably more access. You can see
RBAC implemented in many large-scale applications that are oriented
around sales or customer service.

Attribute-Based Access Control

Attribute-based access control (ABAC) is based on the specific attributes of
a person, resource, or environment. You can often find it implemented
on infrastructure systems, such as those in network or
telecommunications environments.

Subject attributes belong to an individual. We could choose any
number of attributes, such as height in the classic “you must be this tall
to ride” access control in amusement park rides. Another common
example of subject attributes are CAPTCHAs, or “completely automated

public Turing tests to tell humans and computers apart” (Figure 3-5).2

CAPTCHAs control access based on whether the party on the other
end can pass a test that is (in theory) too difficult for a machine to
complete.

Figure 3-5: A CAPTCHA, designed to prove that the user is human

Resource attributes belong to a resource, such as an operating system
or application. You’ll often see access controlled by resource attributes,
although usually this is for technical reasons rather than security
reasons; some software runs only on a particular operating system, and
some websites work only with certain browsers. You might apply this
type of access control as a security measure by requiring someone to use
specific software or protocols for communication.

You can use environmental attributes to enable access controls based
on environmental conditions. People commonly use time to control
access to physical and logical resources. Access controls on buildings
often allow access only during business hours. Many VPN connections
have time limits that force the user to reconnect every 24 hours to
prevent users from keeping a connection running after their
authorization for using it has been removed.

Multilevel Access Control

Multilevel access control models combine several of the access control
models discussed in this section. They’re used when the simpler access
control models aren’t considered robust enough to protect the
information to which you’re controlling access. Military and
government organizations, which handle data of a sensitive nature,
often use multilevel access control models to control access to a variety
of data, from nuclear secrets to protected health information. You’ll
learn about a few of these models now.

The Bell–LaPadula Model

The Bell–LaPadula model implements a combination of discretionary
and mandatory access controls (DAC and MAC) and is primarily
concerned with the confidentiality of the resource in question—in other
words, making sure unauthorized people can’t read it. Generally, in
cases where you see these two models implemented together, MAC
takes precedence over DAC, and DAC works within the accesses
allowed by the MAC permissions.

For example, you might have a resource that is classified as secret
and a user who has a secret level of clearance; under a mandatory access
model, the user would have access to the resource. However, you might
also have an additional layer of DAC under the MAC access so that if
the resource owner has not given the user access, they would not be able
to access it, despite the MAC permissions. In Bell–LaPadula, two
security properties define how information can flow to and from the

resource.3

The Simple Security Property The level of access granted to an
individual must be at least as high as the classification of the
resource in order for the individual to access it. In other words, an
individual cannot read a resource classified at a higher level, but
they can read resources at a lower level.

The * Property (or Star Property) Anyone accessing a resource
can only write (or copy) its contents to another resource classified
at the same level or higher.

You can summarize these properties as “no read up” and “no write
down,” respectively, as shown in Figure 3-6.

Figure 3-6: The Bell–LaPadula model

In short, this means that when you’re handling classified
information, you can’t read any higher than your clearance level, and
you can’t write classified data down to any lower level.

The Biba Model

The Biba model of access control is primarily concerned with protecting
the integrity of data, even at the expense of confidentiality. That means
it’s more important to keep people from altering the data than from
viewing it. Biba has two security rules that are the exact opposite of

those discussed in the Bell–LaPadula model.4

The Simple Integrity Axiom The level of access granted to an
individual must be no lower than the classification of the
resource. In other words, access to one level does not grant access
to lower levels.

The * Integrity Axiom (or Star Integrity Axiom) Anyone
accessing a resource can only write its contents to a resource
classified at the same level or lower.

We can summarize these rules as “no read down” and “no write up,”
respectively, as shown in Figure 3-7. This means that assets that are of
high integrity (meaning they shouldn’t be altered) and assets that are of
low integrity are kept strictly apart.

Figure 3-7: The Biba model

This may seem completely counterintuitive when it comes to
protecting information. However, these principles protect integrity by
ensuring that your resource can be written to only by those with a high
level of access and that those with a high level of access do not access a
resource with a lower classification. Consider an organization that
performs both a low-integrity process that collects (potentially
malicious) PDF uploads from users and a high-integrity process that
scans document inputs from highly classified systems. In the Biba
model, the upload process wouldn’t be able to send data to the scanning
process, so it wouldn’t be able to corrupt the classified input; on top of

this, the scanning process would be unable to access the low-level data,
even if it was directed to.

The Brewer and Nash Model

The Brewer and Nash model, also known as the Chinese Wall model, is an
access control model designed to prevent conflicts of interest. Brewer
and Nash is commonly used in industries that handle sensitive data,
such as the financial, medical, or legal industries. This model considers

three main resource classes.5

Objects: Resources, such as files or information, pertaining to a
single organization

Company groups: All objects pertaining to an organization

Conflict classes: All groups of objects concerning competing parties

A commercial law firm that represents companies in a certain
industry might have files that pertain to various competing individuals
and companies. Since an individual lawyer at the firm accesses files for
different clients, the lawyer could potentially access confidential data
that would generate a conflict of interest. In the Brewer and Nash
model, the level of access to resources and case materials that the lawyer
is allowed would dynamically change based on the materials previously
accessed (Figure 3-8).

Figure 3-8: Brewer and Nash model

In this example, after the lawyer views Client A’s case materials, the
lawyer would no longer be able to access information pertaining to
Client B or any other parties competing with the current client,
resolving any conflicts of interest.

Physical Access Controls

So far you’ve seen logical examples to illustrate the access control
concepts discussed in this chapter, but many of these methods apply to
physical security, as well. Let’s go over some examples of those now.

Physical access controls are often concerned with controlling the
movement of individuals and vehicles. Access controls for individuals
typically regulate their movement in and out of buildings or facilities,
often using badges that open a facility’s doors (something you have,
from Chapter 2). Door control systems that make use of badges
frequently use ACLs in the software that runs them to permit or deny
access for certain doors and times of day.

One of the more common security issues with regulating people’s
access into buildings is tailgating, which occurs when you authenticate
your physical access control measure, such as a badge, and another
person follows directly behind you without also being authenticated.
Tailgating can cause a variety of issues, including creating an inaccurate
representation of who is in the building in the case of emergencies.

We can attempt to solve tailgating in a variety of ways, including
implementing a policy that forbids it, posting a guard in the area, or
simply (but expensively) installing a physical access control solution that
allows only one person to pass through at a time, such as a turnstile. All
of these are reasonable solutions, but, depending on the environment in
question, they may or may not be effective. You’ll often find that a
combination of several solutions works better than any single one.

A much more complex example of a physical access control is the
security system in use at many airports. After the terrorist attacks of
September 11, 2001, in the United States, the level of security at

airports increased. Once you’ve entered the airport security system, you
are required to present a boarding pass and identification (something
you have, times two). You typically pass through several steps to ensure
that you’re not carrying any dangerous devices—a form of attribute-
based access control. You then proceed to your gate and, once again,
present your boarding pass before stepping on the airplane. Such
processes may differ slightly depending on the country, but they’re
generally the same from an access control perspective.

Physical access control for vehicles often revolves around keeping
said vehicles from moving through unauthorized areas, typically using
various simple barriers, including Jersey barriers (Figure 3-9), bollards,
one-way spike strips, and fences. You may also see more complex
installations that include staffed or unstaffed rising barriers, automated
gates or doors, and other similar controls.

Figure 3-9: A Jersey barrier

There are, of course, a huge number of other physical access controls
and methods. Additionally, when referring to physical access control
devices, or access controls in general, the line between an authentication
device and an access control device often becomes rather blurry, or
overlaps entirely. For example, a key for a physical lock could be
considered identification, authentication, and authorization, all the
while being a component of a physical access control. Often these terms

are used inaccurately or inappropriately, even within the security field,
which does not help matters.

Summary

Authorization is a key step in the process of allowing parties to access
resources—in other words, the identification, authentication, and
authorization process. You implement authorization by using access
controls. Typically, you use one of two access control methods: access
control lists or capabilities. Although capabilities can provide safeguards
against confused deputy attacks, they’re not implemented as often as
they should be.

When putting together an access control system, you use an access
control model that outlines who should be given access to what
resources. In our daily lives, we often encounter simpler access control
models, such as discretionary access control, mandatory access control,
role-based access control, and attribute-based access control.
Environments that handle more sensitive data, such as those involved in
the government, military, medical, or legal industry, typically use
multilevel access control models, including Bell–LaPadula, Biba, and
Brewer and Nash.

The next chapter will discuss auditing and accountability, which is
how you keep track of the activities that have taken place after you’ve
gone through the process of identification, authentication, and
authorization.

Exercises

1. Discuss the difference between authorization and access control.

2. What does the Brewer and Nash model protect against?

3. Why does access control based on the Media Access Control
address of the systems on our network not represent strong
security?

4. Which should take place first, authorization or authentication?

5. What are the differences between the MAC and DAC models of
access control?

6. The Bell–LaPadula and Biba multilevel access control models both
have a primary security focus. Can these two models be used
together?

7. If you have a file containing sensitive data on a Linux operating
system, would setting the permissions to rw-rw-rw- cause a potential
security issue? If so, which portions of the CIA triad might be
affected?

8. Which access control model could you use to prevent users from
logging into their accounts after business hours?

9. Explain how the confused deputy problem could allow users to
carry out activities for which they are not authorized.

10. What are some of the differences between access control lists and
capabilities?

4

AUDITING AND ACCOUNTABILITY

When you’ve successfully gone through the identification,
authentication, and authorization processes (or even while you’re still
completing them), you need to keep track of the activities taking place
in your organization. Even after you’ve allowed a party access to your
resources, you still need to ensure that they behave in accordance with
your rules, particularly those relating to security, business conduct, and
ethics. Essentially, you need to make sure you can hold users of your
systems accountable (Figure 4-1).

Figure 4-1: You should always hold users accountable.

Holding someone accountable means making sure that person is
responsible for their actions. This is particularly important now that

most organizations house a great deal of information in digital form. If
you don’t keep track of how people are accessing sensitive data stored
digitally, you can suffer business losses, intellectual property theft,
identity theft, and fraud. In addition, a data breach could have legal
consequences for your organization. Some types of data—medical and
financial, for example—are protected by law in several countries; in the
United States, two such well-known laws are the Health Insurance
Portability and Accountability Act of 1996, which protects medical
information, and the Sarbanes–Oxley Act of 2002, which protects
against corporate fraud.

Many of the measures you put in place to ensure accountability are
examples of auditing, which is the process of reviewing an organization’s
records or information. You perform audits to ensure that people
comply with laws, policies, and other bodies of administrative control.
Auditing can also prevent attacks, such as credit card companies
recording and auditing the purchases you make through your account.
If you decide to buy half a dozen laptops in one day, your unusual
behavior might trigger an alert in the company’s monitoring system,
and the company might temporarily freeze any purchases made with
your card. In this chapter, you’ll learn about accountability in more
detail and see how to use auditing to enforce it.

Accountability

To hold people accountable for their actions, you have to trace all
activities in your environment back to their sources. That means you
have to use identification, authentication, and authorization processes so
you can know who a given event is associated with and what permissions
allowed them to carry it out.

It’s easy to criticize accountability and its associated auditing tools.
You could argue that implementing surveillance techniques is like
having Big Brother watching over your shoulder. In some senses, this is
true; if you monitor people excessively, you can create an unhealthy
environment.

But you can also go too far in the other direction. If you don’t have
sufficient controls in place to deter or prevent people from breaking
your rules and abusing your resources, you’ll end up with security
disasters. The “Equifax Breach” box covers an example of this.

THE EQUIFAX BREACH

In 2017, Equifax’s shareholders, board of directors, and auditors,
as well as the US government, failed to hold Equifax accountable
for protecting consumers’ personal and financial information. As a
result, attackers stole data relating to 147 million Americans, and
Equifax suffered very little in the way of consequences, aside from
a brief dip in stock price. Although Equifax was brought to testify
in front of Congress and lawmakers said they would enact new
regulations because of the incident, Equifax has faced no
consequences, and Congress has not passed any new laws on the
matter.

The breach occurred when attackers exploited a vulnerability
(designated as CVE-2017-5638) in Apache Struts2, a framework
for developing Java applications for web use. This vulnerability
allowed attackers to perform remote code execution (RCE) on the
web servers in question, giving them a foothold in the Equifax
environment. At the time of the attack, Equifax had a solution to
the vulnerability but hadn’t implemented it yet.

Although Equifax has not publicly disclosed the exact details of
the breach beyond the initial entry as of the fall of 2018, we can
infer that, since attackers were able to breach an internet-facing
server and access personally identifiable information belonging to
Equifax customers, the system included significant lapses in
security; Equifax might not have separated servers containing
sensitive data, for example, or it might have used poor access
controls, among other issues. (The US Government
Accountability office released a report confirming these types of
issues.1)

Although outside agencies might often prompt accountability, the
impetus to comply with these requirements must come from within
your organization. For example, when a company experiences a breach
in the United States, laws often require it to notify those whose
information has been exposed. As of March 2018, all 50 US states now
have breach disclosure laws.2

In many cases, however, few people outside the company know of
the breaches until the company notifies those who are directly involved.
You can certainly see why an organization might be tempted, in such a
case, to not say anything about the incident. If you don’t comply with
legal requirements, however, you’ll likely be discovered eventually.
When that happens, you’ll face greater personal, business, and legal
repercussions than if you had handled the situation properly in the first
place.

Security Benefits of Accountability

When you hold people accountable, you can keep your environment
secure in several ways: by enabling a principle called nonrepudiation, by
deterring those who would otherwise misuse your resources, and by
detecting and preventing intrusions. The processes you use to ensure
accountability can also assist you in preparing materials for legal
proceedings.

Nonrepudiation

The term nonrepudiation refers to a situation in which an individual is
unable to successfully deny that they have made a statement or taken an
action, generally because we have sufficient evidence that they did it. In
information security settings, you can achieve nonrepudiation in a
variety of ways. You may be able to produce proof of the activity directly
from system or network logs or recover such proof through the use of
digital forensic examination of the system or devices involved.

You may also be able to establish nonrepudiation using encryption
technologies, like hash functions, to digitally sign a communication or a
file. You’ll learn more about such methods in Chapter 5, which covers
encryption. Another example is when a system digitally signs every
email that is sent from it, making it impossible for someone to deny the
fact that the email came from that system.

Deterrence

Accountability can also prove to be a great deterrent against misbehavior
in your environments. If people are aware that you’re monitoring them
and if you’ve communicated to them that there will be penalties for
acting against the rules, individuals may think twice before straying
outside the lines.

The key to deterrence lies in letting people know they will be held
accountable for their actions. You typically achieve deterrence with the
auditing and monitoring processes, both of which are discussed in the
“Auditing” section of this chapter. If you don’t make your intentions
clear, your deterrent will lose most of its strength.

For example, if, as part of your monitoring activities, you keep track
of the badge access times that tell you when your employees pass in and
out of your facility, you can validate this activity against the times they
have submitted on their time card for each week to prevent your
employees from falsifying their time card and defrauding the company
for additional and undeserved pay. Since the employees are aware that
this cross-checking takes place, they’re deterred from lying on their
time cards. While this might seem intrusive, real companies often use
such methods when they have large numbers of employees working
specific shifts, like at technical support help desks.

Intrusion Detection and Prevention

When you audit information in your environment, you can detect and
prevent intrusions in both the logical and physical sense. If you
implement alerts based on unusual activities and regularly check the

information you have recorded, you stand a much better chance of
detecting attacks in progress and the precursors of future attacks.

Particularly in the logical realm, where attacks can take place in
fractions of a second, you would also be wise to implement automated
tools to monitor the system and alert you to any strange activity. You
can divide such tools into two major categories: intrusion detection
systems (IDSs) and intrusion prevention systems (IPSs).

An IDS is strictly a monitoring and alerting tool; it notifies you when
an attack or other undesirable activity is taking place. An IPS, which
often works from information sent by the IDS, can take action based on
events happening in the environment. In response to an attack over the
network, an IPS might refuse traffic from the source of the attack.
Chapters 10 and 11 will discuss IDSs and IPSs at greater length.

Admissibility of Records

When you seek to introduce records into legal settings, you’re more
likely to have them accepted when they’re produced by a regulated and
consistent tracking system. For instance, if you plan to submit digital
forensic evidence for use in a court case, you’ll likely have to provide a
solid and documented chain of custody for the evidence in order for the
court to accept it. That means you need to be able to track information
such as the location of the evidence over time, how exactly it passed
from one person to another, and how it was protected while it was
stored.

Your accountability methods for evidence collection should create an
unbroken chain of custody. If it doesn’t, your evidence will likely only
be taken as hearsay, at best, considerably weakening your case.

Auditing

Auditing is a methodical examination and review of an organization’s
records.3 In nearly any environment, from the lowest level of
technology to the highest, you usually ensure that people remain
accountable for their actions by using some kind of auditing.

One of the primary ways you can ensure accountability through
technical means is by keeping accurate records of who did what and
when they did it—and then checking those records. If you don’t have
the ability to assess your activities over a period, you won’t be able to
facilitate accountability on a large scale. Particularly in larger
organizations, your capacity to audit directly equates to your ability to
hold anyone accountable for anything.

You may also be bound by contractual or regulatory requirements
that subject you to audits on some sort of recurring basis. In many cases,
such audits are carried out by unrelated and independent third parties
certified and authorized to perform such a task. Good examples of such
audits are those mandated by the Sarbanes–Oxley Act, mentioned
earlier, which ensures that companies report their financial results
honestly.

What Do You Audit?

In the information security world, organizations commonly audit the
factors that determine access to their various systems. For example, you
might audit passwords, allowing you to enforce the policies dictating
how to construct and use them. As discussed in Chapter 2, if you don’t
construct passwords in a secure manner, an attacker can easily crack
them. You should also verify how often users change their passwords. In
many cases, systems can check password strength and manage password
changes automatically, using functions within an operating system or
other utilities. You’ll also have to audit those tools to ensure that they’re
working properly.

Organizations often audit software licenses as well. The software you
use should have a license that proves you obtained it legally. If an
outside agency were to audit you and found that you were running large
quantities of unlicensed software, the financial penalties could be severe.
It is often best if you can find and correct such matters yourself before
receiving a notification from an external company.

The Business Software Alliance (BSA) is one such company that
works on behalf of software firms (Adobe or Microsoft, for instance). It

regularly audits other organizations to ensure that they’re complying
with software licensing. Legal settlements with the BSA can reach
$250,000 per occurrence of unlicensed software,4 plus additional charges
of up to $7,500 to pay BSA legal fees. The BSA also sweetens the pot
for whistle-blowers by offering rewards of up to $1 million for
reporting violations.5

Finally, organizations commonly audit internet usage, including
websites its employees visit, instant messaging, email, and file transfers.
In many cases, organizations have configured proxy servers to funnel all
such traffic through just a few gateways, which allows them to log, scan,
and potentially filter such traffic. Such tools can give you the ability to
examine exactly how employees are using those resources, allowing you
to act if you encounter misuse.

Logging

Before you can audit something, you have to create the records to
review. Logging gives you a history of the activities that have taken place
in an environment. You typically generate logs automatically in
operating systems to keep track of the activities that take place on most
computing, networking, and telecommunications equipment, as well as
on the devices that incorporate or connect to a computer. Logging is a
reactive tool; it allows you to view the record of an event after it has
taken place. To immediately react to something taking place, you would
need to use a tool like an IDS or IPS, which will be covered in detail in
Chapter 10.

You typically configure logging mechanisms to record critical events
only, but you could also log every action carried out by the system or
software. You’d probably want to do this for troubleshooting purposes.
A log might include records of events such as software errors, hardware
failures, user logins or logouts, resource accesses, and tasks requiring
increased privileges, depending on the logging settings and the system
in question.

Generally, only system administrators can review logs. Usually, users
of the system can’t modify them, except maybe to write to them. For

instance, an application running under the context of a particular user
will generally have permissions to write messages to system or
application logs. Keep in mind that collecting logs without reviewing
them is pointless. If you never review the content of the logs, you might
as well have failed to collect them in the first place. It is important that
you schedule a regular review of your logs to catch anything unusual in
their contents.

You may also be asked, in the course of normal security duties, to
analyze the contents of logs in relation to an incident or situation. In the
case of investigations, incidents, and compliance checks, these types of
activities often fall to security personnel. Reviewing logs can be a
difficult task if the period in question is greater than a few days. Even
searching the contents of a relatively simple log, such as that generated
by a web proxy server, can mean sifting through enormous amounts of
data. In such cases, custom scripts or even a tool such as grep (a UNIX
and Linux tool for searching text) can help accomplish the task in a
reasonable amount of time.

Monitoring

A subset of auditing, monitoring is observing information about an
environment to discover undesirable conditions such as failures,
resource shortages, and security issues, as well as trends that might
signal the arrival of such conditions. Like logging, monitoring is largely
a reactive activity; it takes action based on gathered data, typically from
logs generated by various devices. Even when you’re trying to predict
future events, you’re still relying on past data to do so.

When monitoring a system, you’re typically watching for specific
kinds or patterns of data, such as increased resource usage on
computers, unusual network latency (the time it takes a packet to get
from one point to another on a network), certain types of attacks
occurring repeatedly against servers with network interfaces that are
exposed to the internet, traffic passing through your physical access
controls at unusual times of day, and so on.

When you detect unusual levels of such activity, called the clipping
level, your monitoring system might send an alert to a system
administrator or physical security personnel, or it might trigger a more
direct action, such as dropping traffic from a particular IP address,
switching to a backup system for a critical server, or summoning law
enforcement officials.

Auditing with Assessments

As mentioned, logging and monitoring are reactive measures. To assess
the state of your systems more actively, you might use a kind of audit
called assessments, which are tests that find and fix vulnerabilities before
any attackers do. If you can conduct assessments successfully and on a
recurring basis, you will considerably increase your security posture and
stand a much better chance of resisting attacks. You can take two
approaches to this: vulnerability assessments and penetration testing.
While people often use these terms interchangeably, they are two
distinct sets of activities.

Vulnerability assessments generally involve using vulnerability scanning
tools, such as Qualys,6 shown in Figure 4-2, to locate weaknesses in an
environment. Such tools generally work by scanning the target systems
to discover open ports and then interrogating each open port to find out
exactly which service is listening on it. Additionally, you may choose to
provide credentials, if you have them, to allow a vulnerability scanner to
authenticate to the device in question and collect considerably more
detailed information, such as the specific software installed, the users on
the system, and the information contained in or regarding files.

Figure 4-2: Qualys, a tool for vulnerability scanning

Given this information, the vulnerability assessment tool can then
consult its database of vulnerability information to determine whether
the system might contain any weaknesses. Although these databases
tend to be thorough, new or uncommon attacks will often escape their
notice.

Penetration testing takes the assessment process several steps further.
When you conduct a penetration test, you mimic the techniques an
actual attacker would use to breach a system. You may attempt to gather
additional information on the target environment from users or other
systems in the vicinity, exploit security flaws in web-based applications
or web-connected databases, or conduct attacks through unpatched
vulnerabilities in applications or operating systems.

You’ll learn more about assessing security at greater length in
Chapter 14. As with any security measure that you can put in place,

security assessments should be only a single component of your overall
defensive strategy.

Summary

For nearly any action you might care to take, some system somewhere
creates an associated audit record. Organizations regularly query and
update your medical history, grades in school, purchases, and credit
history, and they use this data to make decisions that can impact your
life for better or worse.

When you allow others to access your business’s resources or
personal information of a sensitive nature, you need to hold them
accountable for what they do with the resources or information.

You go through the auditing process to hold people accountable and
ensure that your environment is compliant with the laws, regulations,
and policies that bind it. You may carry out a variety of auditing tasks,
including logging, monitoring, and conducting assessments. Through
these processes, you can both react to threats and actively prevent them.

In the next chapter, you’ll get an overview of the main cryptographic
algorithms that serve as the backbone of today’s security systems.

Exercises

1. What is the benefit of logging?

2. Discuss the difference between authorization and accountability.

3. Describe nonrepudiation.

4. Name five items you might want to audit.

5. Why is accountability important when dealing with sensitive data?

6. Why might auditing your installed software be a good idea?

7. When dealing with legal or regulatory issues, why do you need
accountability?

8. What is the difference between vulnerability assessment and
penetration testing?

9. What impact can accountability have on the admissibility of
evidence in court cases?

10. Given an environment containing servers that handle sensitive
customer data, some of which are exposed to the internet, would
you want to conduct a vulnerability assessment, a penetration test,
or both? Why?

5

CRYPTOGRAPHY

Cryptography, the science of protecting the confidentiality and integrity
of data, is a key part of the vast set of transactions that take place over
your devices daily. You use cryptography when you have conversations
on your cell phones, check your email, buy things from online retailers,
and file your taxes, among other activities. Without the ability to
protect the information you send over such channels, your Internet-
based activities would be much riskier.

In cryptography, encryption is the process of transforming readable
data, called plaintext or cleartext, into an unreadable form, called
ciphertext. Decryption is the process of recovering the plaintext message
from the ciphertext. You encrypt the plaintext or decrypt the ciphertext
using a specific computational procedure called a cryptographic algorithm.
You’ll explore several examples of these in this chapter. Cryptographic
algorithms generally use a key, or multiple keys, to encrypt or decrypt
the message. You can think of a key as a password that you can apply to
the algorithm to retrieve the message.

In this chapter, you’ll look at some of the earliest examples of
cryptography and then dive into modern cryptographic practices.

The History of Cryptography

Some of the oldest examples of cryptography date back to ancient
Greece and Rome. To hide information, Greeks and Romans used
codes, as well as unorthodox methods such as tattooing information on
the shaved heads of messengers and allowing hair to grow over it.
Enough historical information about cryptography exists to fill an entire
volume, and indeed many books have been written on the subject, so I’ll
go over just a few highlights.

The Caesar Cipher

The Caesar cipher, a classic example of ancient cryptography, is said to
have been used by Julius Caesar. The Caesar cipher involves shifting
each letter of the plaintext message by a certain number of spaces in the
alphabet, historically three, as shown in Figure 5-1. After the shift, you
would write the letter A as D, the letter B as E, and so on. To decrypt
the ciphertext, you would apply the same number of shifts in the
opposite direction.

Figure 5-1: Encrypting the phrase “secret message” with the Caesar cipher

We call this type of encryption a substitution cipher, because it
substitutes each letter in the alphabet with a different one. A more
recent variation of the Caesar cipher is the ROT13 cipher, which uses
the same mechanism as the Caesar cipher but moves each letter 13
places forward in the alphabet. Moving each letter by 13 places makes
the message convenient to decrypt, because all you have to do to
retrieve the original is apply another round of encryption with ROT13;
two rotations will return each letter to its original starting place in the
alphabet. Utilities for performing ROT13 are part of the basic set of
tools that ship with many Linux and UNIX operating systems.

Cryptographic Machines

Before the advent of the modern computer, people used machines to
simplify encryption and make more complex encryption schemes
feasible. Initially, such devices were basic mechanical machines, but as
technology progressed, they began to include electronics and
considerably more complex systems.

The Jefferson Disk, invented by Thomas Jefferson in 1795, is a
purely mechanical cryptographic machine. It is composed of 36 disks,
each marked with the letters A through Z in a circle around its rim, as

shown in Figure 5-2.1

Each disk represents one character in a message. The letters on each
disk are arranged in a different order, and each disk is marked with a
unique identifier so you can tell them apart.

To encrypt a message, you line up the characters in a row across the
set of disks so they spell out the message in plaintext, like in row A of
Figure 5-3. Then you choose a different row of characters to use as the
ciphertext, as shown in row B.

Figure 5-2: The Jefferson Disk, one of the earliest crypto-graphic machines

Figure 5-3: Encrypting the message “Meeting is a go” using the Jefferson Disk

The key to this cipher is in the order of the disks. If the encrypting
and decrypting devices arrange their disks in the same order, all you
need to do to decrypt the message is rewrite the ciphertext using the
disks and then look at all the rows until you find the plaintext message.
This is, of course, merely a more complex version of a substitution
cipher, made possible using a mechanical aid, in which the substitution
changes with each letter.

A more intricate example of a cryptographic machine is the German-

made Enigma machine (Figure 5-4).2 Created by Arthur Scherbius in
1923, the Enigma secured German communications during World War
II.

Figure 5-4: An Enigma machine

Conceptually, the Enigma resembles the Jefferson Disk. It’s based on
a series of wheels, or rotors, each with 26 letters and 26 electrical

contacts. It also has a keyboard for entering the plaintext message and a
set of 26 characters above the keyboard, which light up to indicate the
encrypted equivalent. When you press a key on the Enigma keyboard,
one or more of the rotors physically rotates, changing the orientation of
the electrical contacts between them. Current flows through the entire
series of disks and then back through them again to the original disk,
lighting up the scrambled version of each letter on the series of
characters above the keyboard.

For two Enigma machines to communicate during the war, they
needed to have the same configuration. This took a lot of work since
both the rotors and the rings marked with the alphabet on each rotor
needed to be identical and in the same position, and any cables plugged
in needed to be set up in the same fashion. Once the message was
encrypted, it would be sent via Morse code to the receiving end. When
the receiver got the encrypted Morse code message, they would enter
the equivalent characters on the keyboard, and presuming everything
was set up properly, the decrypted character would light up.

There were several models of Enigma machine and a variety of
accessories and add-ons you could attach to them. To add further
possible variations, some models had a patch panel, allowing you to
swap some or all the letters by plugging cables into different positions.
On each rotor, the ring containing the letters of the alphabet could also
be rotated independently of the electrical contacts to change the
relationship between the character selected and the character output.

Between the inherent strengths of the device and the knowledge of
the required configuration needed for decryption, the Enigma posed
quite a difficult task for those attempting to break the messages
generated by it. But a large portion of the device’s strength was in the
secrecy surrounding the equipment and the configurations used for
specific messages; this is a strategy we call security through obscurity in the
security field. Once these secrets became exposed, the encrypted
messages were no longer as secure.

In 1939, when cryptographers at Bletchley Park, a British code-
breaking base during World War II, were given an Enigma to study,
they were able to construct a computer called the Bombe that decoded a

large portion of the Germans’ messages, even though they didn’t have
access to the Enigma settings rotated on a daily basis.

MORE ON THE ENIGMA MACHINE

Anyone interested in getting hands-on experience with a classic
item of cryptographic history can interact with the Enigma in
several ways. The DIY inclined can purchase a kit that re-creates
the functionality of the Enigma using modern electronics

components.3 Additionally, a variety of software-based Enigma

simulators exist.4 These are particularly useful for representing the
relationship between the rotors and the paths running through
them, which change with each character entered. A great many
books have also been written on this topic, but a particularly good
one is The German Enigma Cipher Machine: Beginnings, Success, and
Ultimate Failure by Brian J. Winkel, Cipher Deavours, David
Kahn, and Louis Kruh. Seizing the Enigma: The Race to Break the
German U-Boat Codes, 1933–1945 by David Kahn is another
excellent source for further detail on some of this work.

Kerckhoffs’s Principles

In 1883, the Journal des Sciences Militaires published an article by
Auguste Kerckhoffs, a Dutch linguist and cryptographer, titled “La
cryptographie militaire.” In the article, Kerckhoffs outlined six
principles he thought should serve as a basis for all cryptographic

systems.5

1. The system must be substantially, if not mathematically,
undecipherable.

2. The system must not require secrecy; even if stolen by the enemy,
the system should remain secure.

3. The keys must be easy to communicate and remember without
written notes, and they must be easy to change or modify to use

with different participants.

4. The system ought to be compatible with communication via
telegraph.

5. The system must be portable, and its use must not require more
than one person.

6. Finally, the system must be easy to use, requiring neither complex
thinking nor the knowledge of a long series of rules.

Although several of these principles, such as requiring the system to
support telegraph use or be physically portable, became outmoded once
people started using computers for cryptography, the second principle
remains a key tenet of modern cryptographic algorithms. Claude
Shannon, an American mathematician and cryptographer, later restated

the idea as “the enemy knows the system”;6 in other words,
cryptographic algorithms should be robust enough that even if people
know every bit of the encryption process except for the key itself, they
should still not be able to break the encryption. This idea represents the
opposite approach to security through obscurity.

Modern Cryptographic Tools

Although efficient electromechanical cryptographic systems like
Enigma enabled highly secure means of communication for a period,
the increasing complexity of computers quickly rendered these systems
obsolete. One reason was that the systems were not completely
compliant with Kerckhoffs’s second principle and still largely depended
on security through obscurity to protect the data they processed.

Modern cryptographic algorithms used by computers are truly open,
meaning you can understand the encryption process and still not be able
to break the cipher. These algorithms depend on difficult mathematical
problems, sometimes referred to as one-way problems. One-way problems
are easy to perform in one direction but difficult to perform in the other
direction. Factorization of large numbers is an example of a one-way
problem; it’s easy to create an algorithm that returns a product of

multiple integers, but it’s much more difficult to create one that does
the inverse of that operation—finding the factors of a given integer—
especially if that number is very large. Such problems form the basis of
many modern cryptographic systems.

Keyword Ciphers and One-Time Pads

Two technologies, keyword ciphers and one-time pads, helped bridge
the gap between older cryptographic methods and modern ones.
Although simpler than the algorithms used today, these techniques
increasingly met the standard set by Kerckhoffs’s second principle.

Keyword Ciphers

Keyword ciphers are substitution ciphers, like the Caesar cipher discussed
earlier in the chapter. But, unlike the Caesar cipher, they use a key to
determine what to substitute for each letter of the message. Rather than
shifting all letters by the same number of spaces in the alphabet, you’d
shift each letter to match the corresponding letter in the keyword. For
example, if you use the keyword MYSECRET, you’d have the
substitution shown in Figure 5-5.

Figure 5-5: Encryption using a keyword cipher

The letter A turns into the letter M, which is the first letter in the
key; the letter B turns into the letter Y, which is the second letter in the
key. You continue like this, removing any repeating letters in the key—
notice the second E in SECRET is missing—and once the keyword
ends, you assign the rest of the characters are in alphabetical order,
minus any letter used in the key. If you started with the plaintext THE
QUICK BROWN FOX, you’d get the ciphertext PAC LQBSF YNJVI
RJW.

Ciphers such as this one have weaknesses. Like all the other
historical ciphers we’ve discussed, they’re vulnerable to frequency
analysis, which means you can make guesses about what the message
contents might be based on the frequency of characters used, where
those characters appear in words, and when they’re repeated. For
example, the letter E is the most commonly used letter in the English
alphabet, so you could assume that the most frequent letter in the
substitution might be an E, as well, and work from there to decrypt the
message.

To fix this flaw, cryptographers invented the one-time pad.

One-Time Pads

The one-time pad, also known as the Vernam cipher, is an unbreakable
cipher when used properly. To use it, you create two copies of the same
pad of paper containing a completely random set of numbers, known as
shifts, and give one copy to each party. These pads are the key. To
encrypt the message, you use the shifts to move each letter of the
message forward. Like with the keyword cipher, if the first number on
the pad were 4, you’d shift the first letter of your message by 4 spots,
and if the second number were 6, you’d shift the second letter of the
message by 6 spots. Figure 5-6 shows an example of this.

Figure 5-6: Encryption using a one-time pad

In this example, you’d send the message ATTACKATDAWN as
EYGBPMOMJXEP. The receiving party would consult their one-time
pad and then perform the relative shifts backward to decrypt the
message.

The encrypted text could generate an infinite number of possible
plaintext messages. In the case of the Caesar cipher, where you shift the
entire message by the same number of characters, there are only 26
possible combinations. Brute forcing, or testing every possible key to
retrieve the original message, takes little time, and you’ll likely have no
trouble recognizing the correct message when you’ve succeeded. But
since the one-time pad uses a different shift for each letter, the message
could contain any combination of letters or words that fits the message
length. From the previous example, you could just as easily decrypt the
incorrect messages ATTACKATNOON or NODONTATTACK.

The one-time pad is a primitive version of a stream cipher, which
we’ll come back to shortly. You can use it with more complex pads and
mathematical operations, and modern methods of encryption and key
exchange use some of these same concepts.

Symmetric and Asymmetric Cryptography

Today, we can separate most cryptographic algorithms into two types:
symmetric and asymmetric. In this section, I will discuss each type, as
well as a few specific examples of each.

Symmetric Cryptography

Also known as private key cryptography, symmetric key cryptography uses
a single key to both encrypt the plaintext and decrypt the ciphertext.
Technically, the ciphers we’ve explored so far in this chapter use
symmetric keys; to decode the Caesar cipher, for example, you would
apply the same key to the message as the one used to encrypt it. That
means you must share the key between the sender and the receiver. This
process, known as key exchange, constitutes an entire subtopic of
cryptography. I’ll discuss key exchange at greater length later in this
chapter.

The fact that you must share a single key among all users of the
system is one of the chief weaknesses of symmetric key cryptography. If
attackers gain access to the key, they could decrypt the message—or,
worse yet, decrypt it, alter it, and then encrypt it once more and pass it

on to the receiver in place of the original message (a tactic called a man-
in-the-middle attack).

Block vs. Stream Ciphers

Symmetric key cryptography in the digital age makes use of two types of
ciphers: block ciphers and stream ciphers. A block cipher takes a
predetermined number of bits (or binary digits, which are either a 1 or a
0), known as a block, and encrypts that block. Blocks typically have 64
bits, but they can be larger or smaller depending on the algorithm used
and the various modes the algorithm can operate in. A stream cipher
encrypts each bit in the plaintext message one bit at a time. You can
make a block cipher act as a stream cipher by setting the block size to
one bit.

The majority of the encryption algorithms currently in use are block
ciphers. Although block ciphers are often slower than stream ciphers,
they tend to be more versatile. Since block ciphers operate on larger
blocks of the message at a time, they’re usually more resource intensive
and more complex to implement. They’re also more susceptible to
errors in the encryption process. For example, an error in block cipher
encryption would render a large segment of data unusable, whereas in a
stream cipher, an error would corrupt only a single bit. You can
generally use specific block modes to detect and compensate for such
errors. A block mode defines the specific processes and operations that the
cipher uses. You’ll learn more about these modes in the next section
when I discuss the algorithms that use them.

Typically, block ciphers work better with messages whose sizes are
fixed or known in advance, such as files, or messages whose sizes are
reported in protocol headers. It’s generally better to use stream ciphers
when encrypting data of an unknown size or data in a continuous
stream, such as information moving over a network, where the kind of
data being sent and received is variable.

Symmetric Key Algorithms

Some of the most well-known cryptographic algorithms are symmetric
key algorithms. The US government has used several of these, such as
DES, 3DES, and AES, as standard algorithms for protecting highly
sensitive data. I’ll discuss these three examples in this section.

DES is a block cipher that uses a 56-bit key (meaning the key used by
its cryptographic algorithm is 56 bits long). As you saw when discussing
keyword ciphers, the length of the key determines the strength of the
algorithm, because the longer the key is, the more possible keys there
are. For example, an 8-bit key has a keyspace (range of possible keys) of

28. DES has a keyspace of 256—that’s 72057594037927936 possible keys
attackers must test.

DES first came into use in 1976 in the United States and has since
spread globally. People considered it very secure until 1999, when a
distributed computing project attempted to break a DES key by testing
every possible key in the entire keyspace. They succeeded in a little
more than 22 hours. It turned out the keyspace was too short; to
compensate for this, cryptographers began using 3DES (pronounced
“triple DES”), which is simply DES used to encrypt each block three
times, with three different keys.

Eventually, the US government replaced DES with AES, a set of
symmetric block ciphers. AES uses three different ciphers: one with a
128-bit key, one with a 192-bit key, and one with a 256-bit key, all of
which encrypt blocks of 128 bits. Briefly, there are a few key differences
between AES and 3DES.

1. 3DES is three rounds of DES, while AES uses a newer and
completely different algorithm developed in 2000.

2. AES uses longer and stronger keys than 3DES, as well as a longer
block length, making AES harder to attack.

3. 3DES is slower than AES.

Hackers have attempted a variety of attacks against AES, most of
them against the encryption using the 128-bit key. Most of these have
either failed or had only partial success. At the time of this writing, the
US government still considers AES to be secure.

Other well-known symmetric block ciphers include Twofish,
Serpent, Blowfish, CAST5, RC6, and IDEA. Popular stream ciphers
include RC4, ORYX, and SEAL.

Asymmetric Cryptography

Martin Hellman and Whitfield Diffie first described asymmetric

cryptography in their 1976 paper, “New Directions in Cryptography.”7

While symmetric key cryptography makes use of only one key,
asymmetric key cryptography, also known as public key cryptography, uses
two keys: a public key and a private key. You use the public key to
encrypt data, and anyone can access the public key. You can see them
included in email signatures or posted on servers that exist specifically
to host public keys. Private keys, used to decrypt messages, are carefully
guarded by the receiver. Cryptographers use complex mathematical
operations to create the private and public keys. These operations—
which typically involve factorizing very large prime numbers, as I
discussed earlier in the chapter—are difficult enough that, currently, no
method exists to discover the private key by using the public key.

The main advantage of asymmetric key cryptography over
symmetric key cryptography is that you no longer need to distribute the
key. In symmetric key cryptography, as discussed, the message sender
needs to find a way of sharing the key with whomever they want to
communicate with. They might do this by exchanging keys in person,
sending a key in an email, or repeating it verbally over the phone, but
the method must be secure enough to ensure the key isn’t intercepted.
But with asymmetric key cryptography, you don’t have to share a secret
key. You simply make your public key available, and anyone who needs
to send you an encrypted message can use it without compromising the
security of the system.

Asymmetric Key Algorithms

The RSA algorithm, named after the initials of its creators, Ron Rivest,
Adi Shamir, and Leonard Adleman, is an asymmetric algorithm used
across the world, including in the Secure Sockets Layer (SSL) protocol.
(Protocols are the rules that define communication between devices. SSL

secures many common transactions, such as web and email traffic.)
Created in 1977, RSA is still one of the most widely used algorithms in
the world to this day.

Elliptic curve cryptography (ECC) is a class of cryptographic
algorithms, although people sometimes refer to it as though it were a
single algorithm. Named for the type of mathematical problem on
which its cryptographic functions are based, elliptic curve cryptography
has several advantages over other types of algorithms.

ECC can use short keys while maintaining a higher cryptographic
strength than many other types of algorithms. It’s also a fast and
efficient type of algorithm that allows us to easily implement it on
hardware that has less processing power and memory, such as a cell
phone or portable device. A variety of cryptographic algorithms,
including the Secure Hash Algorithm 2 (SHA-2) and Elliptic Curve
Digital Signature Algorithm (ECDSA), use ECC.

Other asymmetric algorithms include ElGamal, Diffie–Hellman, and
Digital Signature Standard (DSS). Many protocols and applications are
based on asymmetric cryptography, including Pretty Good Privacy
(PGP) for securing messages and files, SSL and Transport Layer
Security (TLS) for common internet traffic, and some voice over IP
(VoIP) protocols for voice conversations.

PGP

PGP, created by Phil Zimmerman, was one of the first strong
encryption tools to reach the eye of the public and the media.
Created in the early 1990s, the original release of PGP was based
on a symmetric algorithm, and you could use it to secure data such
as communications and files. The original version of PGP was
given away as free software, including the source code. At the time
of its release, PGP was regulated as munitions under the US
International Traffic in Arms Regulations (ITAR) law.
Zimmerman spent several years under investigation for criminal
activities when he was suspected of exporting PGP out of the

country, which was illegal at the time and considered to be arms
trafficking.

Hash Functions

Hash functions represent a third type of modern cryptography, which we
call keyless cryptography. Instead of using a key, hash functions, or
message digests, convert the plaintext into a largely unique and fixed-
length value, commonly referred to as a hash. You can think of these
hash values as fingerprints because they’re unique identifiers of a
message. Moreover, hashes of similar messages look completely
different. Figure 5-7 shows some hashes.

Figure 5-7: A hash function generates a unique value for every message, no matter how

similar the messages are.

Notice that the message we’re hashing in B differs from message A
by only a single word, but it produces a completely different hash. The
same is true for message C, which removes only a single space from the
original message but still generates a unique hash. You can’t use hashes
to discover the contents of the original message, or any of its other
characteristics, but you can use it to determine whether the message has
changed. This means that if you’re distributing files or sending
communications, you can send the hash with the message so that the
receiver can verify its integrity. To do this, the receiver simply hashes
the message again using the same algorithm and then compares the two
hashes. If the hashes match, the message has not changed. If they don’t
match, the message has been altered.

Although it’s theoretically possible to engineer a matching hash for
two different sets of data, called a collision, this is difficult and generally
happens only if you’re using a broken hashing algorithm. Some
algorithms, such as Message-Digest algorithm 5 (MD5) and Secure
Hash Algorithm 1 (SHA-1), have been attacked in this fashion, although
it’s uncommon (Figure 5-8).

Figure 5-8: In a hash collision, two distinct messages produce the same hash.

When collisions occur, you generally stop using the compromised
algorithm. Those who require stringent hash security have mostly
stopped using MD5 and replaced it with SHA-2 and SHA-3.

Other hash algorithms include MD2, MD4, and RACE.

Digital Signatures

Another way to use asymmetric algorithms and their associated public
and private keys is to create digital signatures. A digital signature allows
you to sign a message so that others can detect any changes to the
message after you’ve sent it, ensure that the message was legitimately
sent by the expected party, and prevent the sender from denying that
they sent the message (a principle known as nonrepudiation, covered in
Chapter 4).

To digitally sign a message, the sender generates a hash of the
message and then uses their private key to encrypt the hash. The sender
then sends this digital signature along with the message, usually by
appending it to the message itself.

When the message arrives at the receiving end, the receiver uses the
public key corresponding to the sender’s private key to decrypt the
digital signature, thus restoring the original hash of the message. The
receiver can then verify the message’s integrity by hashing the message
again and comparing the two hashes. This may sound like a

considerable amount of work just to verify the integrity of the message,
but software applications usually do it for you, so the process is typically
invisible to the user.

Certificates

In addition to hashes and digital signatures, you can use digital
certificates to sign your messages. Digital certificates, as shown in Figure
5-9, link a public key to an individual by validating that the key belongs
to the proper owner, and they’re often used as a form of electronic
identification for that person.

Figure 5-9: A digital certificate

You typically create a certificate by taking the public key and
identifying information, such as a name and address, and having them
signed by a trusted entity that handles digital certificates, called a
certificate authority. A certificate authority is the entity that issues
certificates. It acts as a trusted third party to both sides of transactions
that involve certificates by signing the certificate to begin with and later
verifying that it is still valid. One well-known certificate authority is
VeriSign. Some large organizations, such as the US Department of

Defense, may choose to implement their own certificate authority to
keep costs down.

A certificate allows you to verify that a public key is truly associated
with an individual. In the case of the digital signature discussed in the
preceding section, someone might have falsified the keys used to sign
the message; maybe those keys did not actually belong to the original
sender. If the sender had a digital certificate, you could easily check with
the certificate authority to ensure that the public key for the sender is
legitimate.

A certificate authority is only a small part of the infrastructure that
you can put in place to handle certificates on a large scale. This
infrastructure is known as a public key infrastructure (PKI). A PKI usually
has two main components: the certificate authorities that issue and
verify certificates, and the registration authorities that verify the identity
of the individual associated with the certificate, although some
organizations may separate some functions out into more than just
these.

A PKI might also revoke certificates if they reach their expiration
date, are compromised, or shouldn’t be used for some other reason. In
this case, the certificate will likely be added to a certificate revocation
list, which is generally a public list that holds all an organization’s
revoked certificates for a time.

Protecting Data at Rest, in Motion, and in Use

You can divide the practical uses of cryptography into three major
categories: protecting data at rest, protecting data in motion, and
protecting data in use. Data at rest includes the large amount of stored
data on devices such as backup tapes, flash drives, and hard drives in
portable devices such as laptops. Data in motion is the enormous
amount of information sent over the internet, including financial
transactions, medical information, tax filings, and other similarly
sensitive exchanges. Data in use is data actively being accessed.

Protecting Data at Rest

People often neglect to protect data at rest, which is data on a storage
device of some kind that isn’t moving over a network, through a
protocol, or across some other communication platform.

Somewhat illogically, data at rest can also, technically, be in motion.
For example, you might ship a load of backup tapes containing sensitive
data, carry a flash drive containing a copy of your tax forms in your
pocket, or leave a laptop containing the contents of a customer database
in the back seat of your car.

Attackers exploit this fact on a regular basis. For example, in 2017,
someone found a USB flash drive in the street outside Heathrow
Airport in London and discovered it contained information about the
routes and security measures used to protect Queen Elizabeth II, as well
as other high-ranking officials and dignitaries, when they move through

the airport.8

Had necessary steps been taken to protect the flash drive’s data at
rest by encrypting it, the security incident would not have occurred (and
authorities would not have had to publicly disclose that the incident had
occurred, saving them from quite a bit of embarrassment).

Data Security

We primarily use encryption to protect data at rest, particularly when
we know that the device containing the data could be physically stolen.

An enormous number of commercial products provide encryption
for portable devices. These often target hard drives and portable storage
devices, including products from large companies such as Intel and
Symantec, to name a few. These commercial products often encrypt
entire hard disks (a process known as full disk encryption) and a variety of
removable media, and they report back to centralized management
servers or other security and administrative features. There are also
several free or open source encryption products on the market, such as

VeraCrypt,9 BitLocker10 (which ships with some versions of Windows),

and dm-crypt11 (which is specific to Linux).

https://calibre-pdf-anchor.a/#a724
https://calibre-pdf-anchor.a/#a725

Physical Security

Physical security, which I’ll discuss at length in Chapter 9, is an
important part of protecting data at rest. If you make it more difficult
for attackers to physically access or steal the storage media that contains
sensitive data, you have solved a large portion of your problem.

In many cases, large businesses have databases, file servers, and
workstations that contain customer information, sales forecasts, business
strategy documents, network diagrams, and other kinds of data they
want to keep from becoming public or falling into the hands of their
competitors. If the physical security at the building that houses the data
is weak, an attacker might be able to simply enter the building, steal a
device, and walk right out with the data.

You also need to be aware of the areas you cannot physically protect
and limit the data that leaves your protected spaces. In an office
building, you could apply extra layers of physical security to the data
center containing your servers, for example. Once sensitive data leaves
such areas, your ability to protect it becomes more limited. In the case
of the Heathrow flash drive that I discussed earlier, officials might have
kept this sensitive data from being copied to an external drive to prevent
it from walking out the door and being lost in the street.

Protecting Data in Motion

Often, data travels over networks, whether it be a closed wide area
network (WAN) or local area network (LAN), a wireless network, or the
internet. To protect data exposed on a network, you will usually choose
to either encrypt the data itself or encrypt the entire connection.

Protecting the Data Itself

You can take a variety of approaches to encrypting the data you are
sending over the network, depending on the kind of data you are
sending and the protocols over which you are sending it.

You will often use SSL and TLS to encrypt a connection between
two systems communicating over a network. SSL is TLS’s predecessor,

although the terms are often used interchangeably, and they are nearly
identical. SSL and TLS operate in conjunction with other protocols,
such as Internet Message Access Protocol (IMAP) and Post Office
Protocol (POP) for email, Hypertext Transfer Protocol (HTTP) for
web traffic, and VoIP for voice conversations and instant messaging.

However, SSL and TLS protections generally apply to only a single
application or protocol, so although you might be using them to
encrypt your communications with the server that holds your email, this
doesn’t necessarily mean the connections made through your web
browser have the same level of security. Many common applications are
capable of supporting SSL and TLS, but you generally need to
configure them to do so independently.

Protecting the Connection

Another approach to protecting data in motion is encrypting all your
network traffic with a virtual private network (VPN) connection. VPN
connections use a variety of protocols to create a secure connection
between two systems. You might use a VPN when you’re accessing data
from a potentially insecure network, such as the wireless connection in a
hotel.

The two most common protocols currently used to secure VPNs are
Internet Protocol Security (IPsec) and SSL. You can configure these
two types of VPN connections to have a nearly identical set of features
and functionality, from the perspective of the user, but they require a
slightly different set of hardware and software to set up.

Typically, an IPsec VPN requires a more complex hardware
configuration on the back end, as well as a software client you have to
install, whereas an SSL VPN often operates from a lightweight plug-in
downloaded from a web page and a less complex hardware configuration
on the back end. From a security standpoint, the two methods have
relatively similar levels of encryption. One weakness of the SSL VPN
client, however, is that you could download it to a public computer or
other random insecure device and provide an avenue for data leakage or
an attack.

Protecting Data in Use

The last category of data to protect is the data currently being used.
Although we can use encryption to protect data while it’s stored or
moving across a network, we are somewhat limited in our ability to
protect data while legitimate entities have access to it. Authorized users
can print files, move them to other machines or storage devices, email
them, share them on peer-to-peer file-sharing networks, and generally
make a mockery of our meticulous security measures.

In June 2013, the public discovered that a government contractor
named Edward Snowden had deliberately leaked classified information
containing details about the US National Security Agency PRISM
program, which was ostensibly designed to collect and review terrorism-

related communications.12 Although this incident occurred more than
five years ago at the time of this writing, the US intelligence community
is still cleaning up after it and working to prevent another such incident.

Summary

Cryptography has existed in one form or another for most of recorded
history. Early cryptographic practices varied in complexity, from the
simple substitution ciphers of the Roman era to the complex
electromechanical machines used before the invention of modern
computing systems. Although such primitive cryptographic methods
would not protect against modern cryptographic attacks, they form the
basis for our modern algorithms.

Today, you conduct cryptography by using computers to create
complex algorithms that encrypt your data. There are three main kinds
of cryptographic algorithms: symmetric key cryptography, asymmetric
key cryptography, and hash functions. In symmetric key cryptography,
you encrypt and decrypt data with the same key, to which all parties
operating on the plaintext or ciphertext have access. In asymmetric
cryptography, you use both a public and a private key. The sender
encrypts the message with the receiver’s public key, and the receiver
decrypts the message with their private key. This resolves the problem

https://calibre-pdf-anchor.a/#a726

of having to find a secure way to share a single private key between the
receiver and the sender. Hash functions don’t use a key at all; they
create a (theoretically) unique fingerprint of the message so that we can
tell if the message has been altered from its original form.

Digital signatures are an extension of hash functions that allow you
to not only create a hash to ensure that the message has not been altered
but also encrypt the hash with the public key of an asymmetric
algorithm to ensure that the message was sent by the expected party and
to ensure nonrepudiation.

Certificates allow you to link a public key to an identity so that you
can ensure that an encrypted message really represents a
communication from a particular individual. The receiver can check
with the issuer of the certificate—the certificate authority—to
determine whether the certificate presented is, in fact, legitimate.
Behind the certificate, you may find a PKI, which issues, verifies, and
revokes certificates.

In general, cryptography provides a mechanism to protect data at
rest, data in motion, and, to a certain extent, data in use. It provides the
core of many of the basic security mechanisms that enable you to
communicate and carry out transactions when the data involved is of a
sensitive nature.

Exercises

1. What type of cipher is a Caesar cipher?

2. What is the difference between a block and a stream cipher?

3. ECC is classified as which type of cryptographic algorithm?

4. What is the key point of Kerckhoffs’s second principle?

5. What is a substitution cipher?

6. What are the main differences between symmetric and asymmetric
key cryptography?

7. Explain how 3DES differs from DES.

8. How does public key cryptography work?

9. Try to decrypt this message using the information in this chapter:
V qb abg srne pbzchgref. V srne gur ynpx bs gurz. —Vfnnp
Nfvzbi.

10. How is physical security important when discussing the
cryptographic security of data?

6

COMPLIANCE, LAWS, AND REGULATIONS

In information security, external rules and regulations often govern your
ability to collect information, pursue investigations, and monitor
networks, among other activities. To comply with these rules, you can
set requirements for protecting your organization, designing new
systems and applications, deciding on how long to retain data, or
encrypting or tokenizing sensitive data.

In this chapter, I’ll outline some rules that might affect your
organization and discuss how to ensure compliance to them.

What Is Compliance?

Simply put, compliance is your adherence to the rules and regulations
that govern the information you handle and the industry within which
you operate.

A decade ago, most information security efforts followed only a few
policies and a general mandate to keep attackers out. Regulations aimed
at protecting data and consumers had loose definitions, and governing
parties enforced them less strictly.

Today, laws and regulations are more stringent, in part because large
breaches, such as the British Airways breach of 380,000 payment cards
in August 2018,1 put compliance issues under increased scrutiny.
Modern regulations update and evolve constantly, creating a moving
target for companies that need to comply with the rules.

In general, you measure compliance against the standard to which
you’re adhering. In several industries, you may even have to comply
with more than one set of rules. While you’ll rarely encounter
contradictory sets of standards, you may find that they disagree on the
specifics. For example, one set of compliance rules might specify a one-
year retention period for server backups, while another might specify six
months. When faced with these situations, you’ll likely find yourself
adopting the strictest set of items across all compliance efforts, for the
sake of simplicity.

Keep in mind that compliance isn’t the same thing as security. Even
if you’ve put hundreds or thousands of hours toward complying with a
specific set of rules and even if you’ve passed an audit, you may not be
secure against attacks. You carry out compliance to meet the needs of
specific third parties—namely, your customers or business partners,
auditors, and the compliance bodies responsible for ensuring your
compliance. Compliance fulfills a business need rather than any
technical security need. Furthermore, you are “compliant” whenever
these third parties are satisfied with your efforts—regardless of how well
you’ve actually met the requirements. An organization will usually put
their “best foot forward” when the inspector comes.

Types of Compliance

There are two main types of compliance: regulatory compliance and
industry compliance.

Regulatory compliance is your adherence to the laws specific to the
industry in which you’re operating. In almost every case, regulatory
compliance involves cyclical audits and assessments to ensure that
you’re carrying everything out according to specification. Preparing for
these audits can be a valuable part of a compliance program, as they can

both educate participants and provide opportunities to find and fix
issues.

Industry compliance is adherence to regulations that aren’t mandated
by law but that can nonetheless have severe impacts upon your ability to
conduct business. For example, organizations that accept credit cards
must typically comply with the Payment Card Industry Data Security
Standard (PCI DSS), a set of rules created by a group of credit card
issuers (including Visa, American Express, and Mastercard) for
processing credit card transactions. The standard defines requirements
for a security program, specific criteria for protecting data, and
necessary security controls. Credit card issuers update the standard
every few years to keep pace with current conditions and threats.

Although these credit card issuers can’t legally enforce compliance
with their standards, their mandate certainly has teeth. Merchants
processing credit card transactions based on cards from PCI members
must submit to yearly assessments of their security practices.
Organizations with low numbers of transactions can simply complete a
self-assessment consisting of a short questionnaire. As the number of
transactions grows, however, the requirements become progressively
stringent, culminating in visits by specially certified external assessors,
mandated penetration tests, requirements for internal and external
vulnerability scanning, and a great deal of other measures.

Consequences of Noncompliance

Noncompliance can trigger a variety of consequences, depending on the
set of regulations in question.

In the case of industry compliance, you may lose the privileges
associated with being compliant. For instance, if you fail to comply with
the PCI DSS regulations that govern processing credit card transactions
and protecting associated data, you may face hefty fines or lose your
merchant status and be unable to process further transactions. For a
business that depends heavily on credit card transactions, such as a retail
store, losing the ability to process credit cards could put them out of
business.

In the case of regulatory compliance, you may face even stiffer
penalties, including incarceration for violating the laws in question.

Achieving Compliance with Controls

To comply with standards and regulatory requirements, you will
typically implement physical, administrative, and technical controls.

Types of Controls

Physical controls mitigate risks to physical security. Examples include
fences, guards, cameras, locked doors, and so on. These controls
typically physically prevent or deter unauthorized access to or through
specific areas.

Administrative controls mitigate risks by implementing certain
processes and procedures. Whenever you accept, avoid, or transfer risk,
you’re likely using administrative controls because you’re putting
processes, procedures, and standards in place to prevent your
organization from hurting itself by taking on too much risk. You’ll also
have to document your administrative controls by keeping records of
policies, procedures, and standards you’ve put in place and providing
evidence that your organization has followed them.

For example, almost every standard or regulation requires you to
have an information security policy, which is a document that defines
information security for an organization. To comply with this
requirement, you must both put a policy in place and be able to prove
that you’ve followed it with regular documentation. The day of the
audit is not a good time to discover that you lack the documentation to
show your policy in use. Proper documentation could include emails,
tickets from your ticketing system, and files from investigations.

Technical controls manage risk using technical measures. You might
mitigate risks by putting firewalls, intrusion detection systems, access
control lists, and other technical measures in place to prevent attackers
from getting into your systems.

None of these controls is sufficient by itself, but each contributes to
the layered defense necessary to provide good security and meet
requirements. Often, the regulations themselves stipulate certain
controls. For instance, the PCI DSS requirements include a variety of
specific controls that organizations must implement to comply with the
standard. Also, keep in mind that your controls are only as good as your
implementation of them. If you implement a control improperly, then
you might be worse off than if you hadn’t implemented it at all, because
you’ve created a false sense of security.

Key vs. Compensating Controls

In addition to distinguishing types of controls, you can divide your
controls into two levels of importance. Key controls are the primary
controls used to manage risk in your environment and have the
following characteristics:

1. They provide a reasonable degree of assurance that the risk will be
mitigated.

2. If the control fails, it is unlikely that another control could take
over for it.

3. The failure of this control will affect an entire process.

What you consider a key control will vary based on your
environment and the present risks, and you should always test key
controls as part of compliance or audit efforts. An example of a key
control might be the use of antivirus software on all systems processing
payment card information in an environment.

Compensating controls are controls that replace impractical or
unfeasible key controls. When you put a compensating control in place,
you’ll likely have to explain to auditors how it will fulfill the intent and
purpose of the control you’re replacing.

For example, although regulations may require you to run antivirus
tools on all systems, certain systems might not have sufficient resources
to run these utilities without adverse impacts. In this case, as a

compensating control, you might use Linux operating systems, which
are less susceptible to malware.

Maintaining Compliance

To maintain your compliance over time, you can cycle through the
following set of activities, as shown in Figure 6-1: monitoring,
reviewing, documenting, and reporting.

Figure 6-1: Maintaining compliance

Following each step in this process helps you maintain the health of
your controls.

Monitoring

You must monitor your controls (and the data produced by or
related to them) on an ongoing basis to determine whether they
effectively mitigate or reduce risk. In the information security
world, no news often just means no good news. Since your
environment and technology might change, it’s important to
check that your controls—especially your key controls—continue
to play their intended role. Without such monitoring, your
controls quickly stop being useful, possibly without your
knowledge.

Reviewing

Controls need to undergo a periodic review to determine whether
they’re still effective and meet the objectives for managing risk in
your particular environment. As old risks evolve and new risks
arise, you’ll need to make sure your controls still cover these risks
appropriately, determine whether you need any new controls, or
decide whether you should retire old controls.

Documenting

You should document the results of your reviews and carefully
track any changes to a control’s environment. Documentation
helps you evaluate trends and maybe even predict future control
changes, which can allow you to forecast the resources you’ll need
later.

Reporting

After monitoring, reviewing, and documenting the state of your
controls, you must report the results to your leadership. This not
only keeps them aware of the state of your controls and enables
them to make informed decisions for the organization but also
provides you with a means of requesting the staff and resources
you need for these efforts.

Laws and Information Security

When it comes to information security, enforcing laws and regulations
is often trickier than in cases of physical incidents. Matters such as
attributing attacks to a particular party or assessing the damage
resulting from an attack—which can be simple when they concern, say,
the vandalism of a building—are made considerably more difficult in
the world of information security.

Many laws and regulations developed in recent years seek to address
these types of situations. Some of them leave gaps, while others overlap
significantly. You’ll be measured against these laws when preparing for
or being assessed for compliance. Let’s look at a few of them.

Government-Related Regulatory Compliance

In the United States, standards frequently form the basis for the laws
and regulations that govern the behavior of the government and those
who work closely with it. In the world of information security and
compliance, these standards are often from the series of Special
Publications (SPs) created by the US National Institute of Standards
and Technology (NIST). While NIST is not itself a regulatory agency,

the standards it produces have compliance requirements, generally
through other government compliance standards based on NIST’s SPs
(yes, this is somewhat convoluted). Security professionals often play a
major role in making sure that an organization complies with these
government-related standards.

WHAT IS NIST?

What is now called NIST was originally created in the early 1900s
to develop standards for weights and measures and serve as a
national laboratory. Over time, its mission has evolved to include
promoting technology and innovation in the United States.
NIST’s Special Publications have a significant impact on
information security.

Two of the most common government compliance standards are the
Federal Information Security Management Act (FISMA) and the
Federal Risk and Authorization Management Program (FedRAMP),
which are both based on NIST SP 800-53, “Security and Privacy
Controls for Information Systems and Organizations.”

Federal Information Security Management Act

The Federal Information Security Management Act of 2002 applies to
all US federal government agencies, all state agencies that administer
federal programs (such as Medicare), and all private companies that
support, sell to, or receive grant money from the federal government.

FISMA requires that an organization implement information
security controls that use a risk-based approach—one that handles
security by enumerating and compensating for specific risks.

After an organization passes an audit, the federal agency they’re
working with grants it an authority to operate (ATO). Since the ATO is
specific to each agency, a company working with ten different agencies
must obtain ten different ATOs.

Federal Risk and Authorization Management Program

The Federal Risk and Authorization Management Program, established
in 2011, defines rules for government agencies contracting with cloud
providers.2 This applies to both cloud platform providers, such as AWS
and Azure, and companies providing software as a service (SaaS) tools
that are based in the cloud. I’ll discuss this distinction later in this
chapter.

Unlike FISMA, FedRAMP certification consists of a single ATO that
allows an organization to do business with any number of federal
agencies. Since the FedRAMP ATO is considerably broader, the
requirements to obtain it are more stringent than FISMA’s. As of this
writing, FedRAMP marketplace lists only 91 companies that possess an
ATO.3

Industry-Specific Regulatory Compliance

Many regulatory compliance requirements pertain to a specific area of
operation, such as the healthcare industry, public companies, and
financial institutions. Let’s look at a few of these requirements.

Health Insurance Portability and Accountability Act

The Health Insurance Portability and Accountability Act (HIPAA) of
1996 protects the rights and data of patients in the US healthcare
system. Security professionals should pay specific attention to Title II of
HIPAA, which lays out requirements for safeguarding protected health
information (PHI) and electronic protected health information (e-PHI).
(You can generally interpret these as consisting of any portion of a
patient’s medical records or medical transactions.) While HIPAA
primarily applies to organizations involved in healthcare or health
insurance, it may also apply in other odd cases, such as employers that
self-insure.

HIPAA requires that you ensure the confidentiality, integrity, and
availability of any information that you handle or store; protect this
information from threats and unauthorized disclosures; and ensure that

your workforce is compliant with all of its rules. This can be a tall order,
especially in institutions that handle large amounts of PHI.

Sarbanes–Oxley Act

The Sarbanes–Oxley Act (SOX) of 2002 regulates financial data,
operations, and assets for publicly held companies. The government-
enacted SOX as a response to incidents of financial fraud among several
large companies, most notably the Enron scandal of 2001, in which the
public learned that the company had falsified years’ worth of financial
reporting.4

Among other provisions, SOX places specific requirements on an
organization’s electronic recordkeeping, including the integrity of
records, retention periods for certain kinds of information, and methods
of storing electronic communications. Security professionals often help
design and implement systems impacted by SOX, so it pays for you to
understand these regulations and your requirements under them.

Gramm–Leach–Bliley Act

The Gramm–Leach–Bliley Act (GLBA) of 1999 aims to protect
information (such as personally identifiable information (PII), which is
any data that can identify a specific person) and financial data belonging
to customers of financial institutions. Interestingly, GLBA defines
financial institution broadly to include “banks, savings and loans, credit
unions, insurance companies and securities firms … some retailers and
automobile dealers that collect and share personal information about
consumers to whom they extend or arrange credit,” as well as businesses
that use financial data to collect debts from customers.5

To comply with GLBA, you must secure every pertinent record
against unauthorized access, track people’s access to these records, and
notify customers when you share their information. Organizations must
also have a documented information security plan in place and
specifically have an overarching information security program to handle
security for the organization.

Children’s Internet Protection Act

The Children’s Internet Protection Act (CIPA) of 2000 requires schools
and libraries to prevent children from accessing obscene or harmful
content over the Internet. CIPA requires these institutions to have
policies and technical protection measures in place to block or filter
such content. Additionally, these institutions must monitor the activities
of minors and provide education regarding appropriate online behavior.

CIPA encourages institutions to adopt these standards not by
imposing penalties for noncompliance but by providing cheap internet
access for eligible institutions that choose to comply with them.

Children’s Online Privacy Protection Act

The Children’s Online Privacy Protection Act (COPPA) of 1988
protects the privacy of minors younger than 13 by restricting
organizations from collecting their PII, requiring the organizations to
post a privacy policy online, make reasonable efforts to obtain parental
consent, and notify parents that information is being collected. Many
companies choose to charge a small fee for accounts belonging to a
minor as a way of verifying parental consent, while others refuse service
to minors entirely.

COPPA is a bit of a hot potato in the information security world, as
it requires organizations to judge the age of its users and provides for an
even more restrictive class of PII for children if such data is to be
collected, even by accident, both of which are difficult to execute with a
high level of surety. In 2016, the mobile advertising company InMobi
was fined $950,000 under COPPA for unknowingly tracking the
location of minors younger than 13 with its advertising software.6 As
you can see, compliance here can be difficult, even when organizations
are honestly attempting to do so.

Family Educational Rights and Privacy Act

The Family Educational Rights and Privacy Act (FERPA) of 1974
protects students’ records. FERPA applies to student at all levels, and

when students turn 18, the rights to these records shift from the parents
to the students.

FERPA defines how institutions must handle student records to
protect them and how people can view or share them. As schools now
largely hold educational records in digital form, it’s not uncommon for a
security professional to participate in incidents and design discussions,
and to address general security issues when working at an institution
that handles educational records.

Laws Outside of the United States

Foreign laws governing computing and data can differ greatly from US
laws. If your organization operates internationally, you need to research
the relevant laws in every country in which you plan to conduct
business. You should also check for any treaties that regulate security
practices and the exchange of information between those countries.

It pays to know ahead of time where you might encounter regulatory
issues. For example, in one country, you might be able to gather log
data containing a list of machines and associated usernames, cross-
referenced with the owner’s employee number and email address. But in
another country, collecting this data might be more difficult, or perhaps
even illegal.

One example of an international regulation relevant to information
security is the General Data Protection Regulation (GDPR), which the
European Union enacted in 2018. GDPR covers data protection and
privacy for all individuals in the European Union. The regulation
applies to anyone collecting data about EU citizens, regardless of the
country in which you’re working.

GDPR requires that organizations get consent before collecting
people’s data, report data breaches, give individuals the right to access
and remove collected data, and set specific guidelines for privacy and
privacy programs. Given the broad applicability of GDPR, security and
privacy programs all over the world had to adapt when this law came
into effect, prompting a great many customer communications, new

privacy-oriented banners on websites, and updates to many
organizations’ policies.7

Adopting Frameworks for Compliance

In addition to the frameworks provided by specific regulations, it’s
helpful to choose a framework for your overall compliance efforts. For
example, if your organization is bound to comply with separate,
unrelated regulations—HIPAA and PCI DSS, for example—you might
want to choose a more overarching framework to guide the entire
compliance effort and security program and then adjust it as needed for
specific areas of compliance.

In this section, you’ll learn about some frameworks you can use.
Choosing a well-known framework can also ease the path of an audit, as
you’re able to give the auditor an idea of what to expect of your
program and the specific controls that you’ve implemented.

International Organization for Standardization

The International Organization for Standardization (ISO) is a body first
created in 1926 to set standards between nations. It has created more
than 21,000 standards “covering almost every industry, from
technology, to food safety, to agriculture and healthcare.”8

The ISO 27000 series that covers information security includes
standards such as the following:

ISO/IEC 27000, “Information security management systems –
Overview and vocabulary”

ISO/IEC 27001, “Information technology – Security Techniques –
Information security management systems – Requirements”

ISO/IEC 27002, “Code of practice for information security
controls”

This series of ISO standards, also referred to in the industry as ISO
27k, discusses information security management systems and is intended
to help manage the security of the assets within your organization.
These documents lay out best practices for managing risk, controls,
privacy, technical issues, and a wide array of other specifics.

National Institute of Standards and Technology

A National Institute of Standards and Technology Special Publication
provides guidelines for many topics in computing and technology,
including risk management. Two of the commonly referenced
publications in this area are SP 800-37, “Guide for Applying the Risk
Management Framework to Federal Information Systems,” and SP 800-
53, “Security and Privacy Controls for Federal Information Systems and
Organizations.”

SP 800-37 lays out the risk management framework in the following
six steps, which form the basis of many security programs:

Categorize Categorize the system based on the information it
handles and the impact of exposing or losing such data.

Select Select controls based on the system’s categorization and
any extenuating circumstances.

Implement Implement the controls and document the
implementation.

Assess Assess the controls to ensure that they’re properly
implemented and performing as expected.

Authorize Authorize or ban the use of the system based on the
risk it faces and the controls implemented to mitigate that risk.

Monitor Monitor the controls to ensure that they continue to
appropriately mitigate risk.

If you intend to select controls based on SP 800-37, you can find
specific guidelines for that purpose in SP 800-53.

Custom Frameworks

You could always develop your own framework or modify an existing
one, but you should think carefully before doing so. As you’ve just seen,
plenty of frameworks for risk management already exist, all of which
have undergone considerable review and testing. You probably shouldn’t
try to reinvent the wheel here.

Compliance amid Technological Changes

Keeping up with technological change can provide challenges for both
the bodies that enforce compliance and those who are attempting to
achieve it. An excellent example of this is cloud computing, discussed in
this section.

Before hosting data and applications in the cloud became a common
technology trend, organizations generally owned their own servers and
infrastructure and hosted them either internally or in a co-located data
center. This presented a relatively black-and-white set of areas for who
owned and was responsible for the security of these devices.

Now that entire companies exist almost entirely in the cloud,
compliance efforts have shifted in an attempt to specifically cope with
these situations; new policies might govern how to track and evaluate
third-party security and compliance efforts, new regulations determine
how to manage cloud data, and auditors ask entirely new questions,
requiring evidence specific to these types of environments.

While most of the technology change is relatively gradual, allowing
the security and compliance industries to slowly shift to keep pace with
it, this is not always the case. Two relatively new and potentially
disruptive technologies have the potential to cause further shift in
compliance requirements for some industries: blockchain and
cryptocurrencies.

Compliance in the Cloud

For organizations operating partially or entirely in the cloud,
compliance can present an additional set of challenges. That’s because
cloud offerings come in different models, each of which gives you a
differing level of control over the environment. These models are
infrastructure as a service (IaaS), platform as a service (PaaS), and software as
a service (SaaS), as shown in Figure 6-2.

Figure 6-2: Cloud models

At a high level, IaaS provides you with access to virtual servers and
storage. Examples include Google Cloud and Amazon Web Services.
PaaS provides you with prebuilt servers, such as database or web servers,
like Azure, and SaaS provides you with access to a specific application or
application suite, as in the case of Google Apps.

PaaS gives you some level of control, and SaaS gives you little or
none. Conversely, IaaS requires you to adopt a greater level of
responsibility, PaaS requires you to adopt some level of responsibility,
and SaaS requires you to adopt very little of it. To quote from Spider-
Man, “With great power comes great responsibility.” (The attribution of
this quote is a bit tricky, but I can credit Stan Lee in “Amazing Fantasy
#15” with relative safety.)

The choice of which of these types of services to use is a matter of
balancing your need for flexibility and configurability with how easy the
service should be to use. If you want to send a simple email and be done,
it would be logical for you to use a tool like Gmail (SaaS) to do so. It
would not make very much sense, in this case, for you to build and

configure a virtual server, install and configure mail server software on it
(IaaS), and then send your email.

Who Owns the Risk?

In each cloud model, the cloud provider must take responsibility for the
portions of the environment that the users can’t control. That means
that, in some cases, you’ll be responsible for securing your data directly;
in other cases, you’ll be responsible for ensuring that the services you’re
using secure it appropriately.

In IaaS environments, the cloud provider owns the risks related to
the networks and servers on which the virtual infrastructure exists. In
other words, it’s responsible for securing and maintaining the hosts (the
servers that run the virtual machines), the storage arrays on which the
customer’s storage volumes reside, and the networks used by the hosts,
among other components. Because IaaS gives you a large amount of
control over the environment and how it is configured, it requires you
to adopt a greater level of responsibility.

In PaaS environments, the cloud customers access the servers
directly, but they can’t access the infrastructure that runs those servers.
In this case, the cloud provider assumes responsibility for the security of
that infrastructure, including tasks such as patching the operating
system, configuring the servers, backing up the servers, and maintaining
storage volumes.

In SaaS environments, customers probably won’t be able to make
changes to the infrastructure or servers at all, which means the cloud
provider is responsible for them entirely. Customers might still be
responsible for the data they input into the environment, but not for the
security of the environment itself.

Audit and Assessment Rights

Your contract with the cloud provider generally stipulates your right to
audit and assess the security of the cloud environment. In many cases,
the service allows customers to audit and assess the environment within
certain specific bounds. For instance, it might stipulate how and when

you can ask the provider for an audit by your internal audit team or a
third-party audit company. These limits are reasonable, since
responding to each audit request takes a lot of work. The provider
might also respond to audit requests by providing the result of an
annual external audit conducted expressly for the purposes of
responding to requests such as these.

If you hope to directly assess the security of a cloud provider,
perhaps with a penetration test (which I’ll discuss in depth in Chapter
14), you might meet resistance. Many providers deny such requests
outright or allow penetration tests only under very specific and tightly
restricted conditions. This is also understandable for many of the same
reasons that they might limit audits. Additionally, active security testing
often impacts the infrastructure, platform, or application being tested,
and the provider might experience service issues as a result.

Technology Challenges

Cloud services pose technological challenges related to compliance
because they’re shared resources. If you’re using cloud resources on the
same host server as another company, that company’s lack of security
could easily impact the security of your systems, as well.

Risks increase in cloud services that the provider manages more
closely, such as SaaS, because you share a larger portion of the
environment with other customers. You may have data intermingled
with that of other customers in the same database, with only the
application logic keeping your data apart from theirs.

In an IaaS service, on the other hand, although you’re sharing some
of the same server resources to host virtual machines and some of the
same storage space, a sharp divide exists between your resources and the
resources of others.

Compliance with Blockchain

Blockchain is a distributed and uneditable digital ledger. Transactions
are recorded to the ledger as a block, and each block is attached to the
previous block in the chain by a one-way mathematical handshake

(similar to a hash, as discussed in Chapter 5). Each participant has a
copy of the blockchain, and the consensus of 51 percent of participants
defines the accepted chain (generally the longest chain).

In security terms, blockchain promises a strong form of integrity.
When you record something to blockchain, you can, with a high degree
of certainty, say that it wasn’t altered when you look at it later. For
example, Walmart uses this technology to track the path of its food
products from the supplier with which they originate to the stores that
will sell them to customers.9

When it comes to compliance, it’s important to create controls that
demonstrate an understanding of how blockchain works. For example,
people often cite the use of blockchain as an indelible record that you
can write to something and never be concerned with that data being
altered. Unfortunately, this is true only under certain conditions. You
can force consensus on blockchain by controlling 51 percent of the
participants, at which point you can write whatever you like to it. Some
companies have even gone as far as to promote “private” blockchains,
which really amounts to just using encryption to ensure the integrity of
the data. Someone trying to regulate blockchain should understand
what drawbacks there may be in using it; if you rush from one hot new
technology to the next, you may be putting in place controls that are, in
actuality, only security theater.

Compliance with Cryptocurrencies

A cryptocurrency is a form of digital currency often based on the use of
blockchain. Cryptocurrencies are unquestionably a disruptive
technology. The first cryptocurrency, Bitcoin, appeared in 2009 and has
enjoyed a wild variance in value between now and then.

Bitcoin generates currency through the same means it uses to keep
the underlying blockchain functioning. To attach each block in the
Bitcoin to the chain, as discussed, it needs to be verified with a
mathematical handshake. This function requires some level of
computing power from all of those participating in the blockchain, and

as an incentive, those who participate are rewarded with a Bitcoin. This
process of generating new Bitcoins is known as Bitcoin mining.

In February 2019, Gerald Cotton, the founder of Quadriga (which at
the time was the largest cryptocurrency exchange in Canada),
reportedly perished suddenly. Cotton, a security-minded fellow,
maintained the entire exchange from offline accounts stored on his
highly encrypted laptop. Upon his death, the entirety of the
approximately $190 million in cryptocurrency held by the exchange
across 115,000 clients vanished into thin air as his laptop became
inaccessible. As of this writing, the exact circumstances surrounding this
incident are still under investigation, although there are rumors that the
incident involved some sort of chicanery.

As an organization, you are likely bound by a number of laws and
regulations that govern financial transactions, as well as those that
define the rules for investors and reporting to them. The use of
cryptocurrency in business at all is still a gray area, although many
businesses do so. It is all but certain, however, that you would, as an
organization, be unable to shrug off a multimillion-dollar loss due to a
cryptocurrency technology failure without serious repercussions from a
legal and regulatory perspective.

Summary

In this chapter, I discussed the laws and regulations relevant to
information security and what it means to comply with them. A great
number of these are pertinent to computing, and they can vary heavily
from one country to the next. Businesses might face both regulatory
compliance and industry compliance, which they typically maintain by
implementing controls.

I also talked about compliance in newer technologies, such as cloud
computing and blockchain, which present additional challenges for
those attempting to regulate them.

Exercises

1. Select one of the US laws applicable to computing covered in this
chapter and summarize its main stipulations.

2. Why might a compliance audit be a positive occurrence?

3. What type of data is COPPA concerned with?

4. How do compliance and security relate to each other?

5. What issues might make conducting an international information
security program difficult?

6. Which NIST Special Publication forms the basis for FISMA and
FedRAMP?

7. Why are industry regulations, such as PCI DSS, important?

8. What are the potential impacts of being out of compliance?

9. What set of ISO standards might be useful for an information
security program?

10. What two items are an indicator of which sets of compliance
standards your company might fall under?

7

OPERATIONS SECURITY

Known in military and government circles as OPSEC, operations
security is a process you use to protect your information. Although
we’ve discussed certain elements of operations security previously, such
as using encryption to protect data, the entire operations security
process encompasses much more.

Operations security involves not only putting security measures in
place but also identifying what exactly you need to protect and what to
protect it against. If you jump directly to implementing protections, you
might fail to direct your efforts toward the most critical information.
Moreover, when putting security measures in place, you should
implement measures that are relative to the value of what you are
protecting. If you apply the same level of security to everything, you
may be overprotecting some resources that are not of high value and
underprotecting resources of much greater value.

In this chapter, I’ll discuss the US government’s guidelines for
conducting operations security. I’ll then outline the origins of some of
these concepts and talk about everyday uses for them as tools for
protecting yourself and your organizations.

The Operations Security Process

The operations security process laid out by the US government has five
parts, as shown in Figure 7-1.

Figure 7-1: The operations security process

First, you identify the information that needs protection. You then
analyze the threats and vulnerabilities that might impact it and develop
methods of mitigating those threats and vulnerabilities. Although the
process is relatively simple, it’s effective. Let’s go through these steps
one by one.

Identification of Critical Information

The first and most important step in the operations security process is
to identify your most critical information assets. Any given business,
individual, military operation, process, or project is bound to have at
least a few critical items of information on which everything else
depends. For a soft drink company, it might be their secret recipe. For
an application vendor, it might be their source code, while for a military
operation, it might be an attack timetable. You should be identifying the
assets that would cause you the most harm if exposed.

Analysis of Threats

The next step is to analyze any threats related to the critical information
you identified. Remember from Chapter 1 that a threat is something
that has the potential to cause you harm. Using your list of critical
information, you might evaluate the harm caused if critical information
were exposed, as well as who might exploit that exposure. This is the
same process many military and government organizations use to
classify information and determine who can see it.

For example, if you own a software company, you might identify the
proprietary source code of your product as critical information.
Exposing this critical information could make the company vulnerable
to attackers and competition. Attackers might be able to determine the
scheme used to generate license keys and then develop a utility that
allows them to pirate your software, costing revenue. Competitors
might use exposed source code to copy your software’s proprietary
features in their own applications, or they might copy large portions of
your application and sell it themselves.

Repeat this step for each item of critical information, for each party
that might take advantage of it if it were exposed, and for each use they
might make of the information. As you can see, the more information
assets you identify as critical, the more involved this step becomes. In
some circumstances, you may find that only a limited number of parties
can make use of the information and then only in a limited number of
ways; in other cases, you may find the exact opposite. For example, a

secret chocolate-chip cookie recipe, intended for mass production on an
industrial food processing line, would be of use only to another
organization operating in this type of industry. The same recipe
composed and scaled for home use would be usable by anyone.

Analysis of Vulnerabilities

Vulnerabilities are weaknesses that others can exploit to harm you. The
third step in operations security is analyzing the vulnerabilities in the
protections you’ve put in place to secure your information assets. You’ll
do this by looking at how you interact with these assets and what areas
an attacker might target to compromise them.

When analyzing the vulnerabilities affecting your source code, you
might find that the security controls on the source code aren’t very
rigorous and that it’s possible for anyone with access to the operating
system or network shares to access, copy, delete, or alter it. This might
make it possible for an attacker who has compromised the system to
copy, tamper with, or entirely delete the source code. Or the
vulnerability might render the files vulnerable to accidental alteration
while the system is undergoing maintenance.

You might also find there are no policies in place that regulate where
the source code should be stored, whether copies of it should exist on
other systems or on backup media, or how it should be protected in
general. These issues might create multiple vulnerabilities and could
lead to serious security breaches.

Assessment of Risks

Next, you decide what issues you need to address in the rest of the
operations security process. As discussed in Chapter 1, risk occurs when
you have a matching threat and vulnerability. In the software source
code example, one of the threats was the potential exposure of the
application source code. The vulnerabilities were poor controls on
access to the source code and a lack of a policy dictating how exactly to

control access. These two vulnerabilities could lead to the exposure of
your critical information to your competitors or attackers.

Again, you need a matching threat and vulnerability to constitute a
risk. If the confidentiality of your source code wasn’t a goal—for
instance, if you were creating an open source project and the source
code were freely available to the public—you wouldn’t have a risk.
Likewise, if your source code were subject to stringent security
requirements that made it nearly impossible to release in an
unauthorized manner, you wouldn’t have a risk, either, as the
vulnerability would not be present.

Application of Countermeasures

Once you’ve discovered risks to your critical information, you can put
measures in place to mitigate them. In operations security, these are
called countermeasures. As discussed, to constitute a risk, you need a
matching set of threats and vulnerabilities. When you construct a
countermeasure for a risk, you need to mitigate either the threat or the
vulnerability at the bare minimum.

In the source code example, the threat was that your source code
might be exposed to your competitors or attackers, and the vulnerability
was the poor set of security controls you had in place to protect it. In
this instance, there is not much that you can do to protect yourself from
the threat itself without changing the nature of your application
entirely, so you can’t mitigate the threat. You can, however, put
measures in place to mitigate the vulnerability.

For example, to mitigate this vulnerability, you can institute stronger
measures to control access to the code and establish a set of rules for
how to control access. Once you break the threat/vulnerability pair like
this, you’ll no longer have a serious risk.

It’s important to note that this is an iterative process, and you’ll likely
need to repeat the cycle more than once to fully mitigate any issues.
Each time you go through the cycle, you take into account the
knowledge and experience you gained from your previous mitigation
efforts, allowing you to adjust your solution for an even greater level of

security. You’ll also need to revisit this process when your environment
changes and new factors arise.

If you’re familiar with risk management, you might have noticed that
the operations security cycle lacks a step that evaluates the effectiveness
of the countermeasures. I believe this step is implied throughout the
entire operations security process. However, the process is certainly not
set in stone, and you can include this step if you see the benefits of
doing so.

Laws of Operations Security

Kurt Haase, a former employee of the Nevada Operations Office of the
Department of Energy, distilled the operations security process into
three rules, called the laws of OPSEC. These laws are another way of
thinking about the cycle discussed earlier, and while not necessarily the
most important parts of the process, they do serve to highlight some of
operation security’s main concepts.

First Law: Know the Threats

The first law of operations security is “If you don’t know the threat,

how do you know what to protect?”1 In other words, you need to be
aware of both the actual and potential threats facing your critical data.
This law maps directly to the second step in the operations security
process.

Ultimately, as discussed earlier, each piece of information could be
susceptible to its own threat. Threats might even depend on your
location. This is particularly true when it comes to cloud-based services.
For example, even if you’ve enumerated all the threats facing your
critical data for a location, you might encounter new threats if you
replicate that data across multiple storage areas, in multiple countries.
That’s because different parties may have easier access in one area, or
the relevant laws may differ significantly from one location to another.

Second Law: Know What to Protect

“If you don’t know what to protect, how do you know you are

protecting it?”2 This law of operations security points to the need to
evaluate your information assets and determine what exactly you might
consider to be your critical information. This second law maps to the
first step in the operations security process.

Most government environments mandate the identification and
classification of information. Each item of information—perhaps a
document or file—is assigned a label, like classified or top secret, that
identifies the sensitivity of its contents. Such labeling makes the task of
identifying your critical information considerably easier, but
unfortunately, few people outside the government use that system.

Some organizations in the business world might have information
classification policies, but, in my experience, they usually implement
such labeling sporadically. A few civilian industries, such as those that
deal with data that has federally mandated requirements for protection,
like financial or medical data, do classify information, but these are the
exceptions rather than the rule.

Third Law: Protect the Information

The third and last law of operations security is “If you are not

protecting [the information], … THE DRAGON WINS!”3 This law
addresses the necessity of the operations security process overall. If you
don’t take steps to protect your information from the dragon (your
adversaries or competitors), they win by default.

Cases of the “dragon” winning are unfortunately common. Security
breaches show up constantly in the news and on websites that track
breaches, such as Privacy Rights Clearinghouse
(https://www.privacyrights.org/). In many cases, a breach was the result of
simple carelessness and noncompliance with the most basic security
measures.

This is true for the breach of the California-based email marketing
company SaverSpy discovered by a security researcher in September

https://www.privacyrights.org/

2018. The breach contained more than 43GB of user data, including
the names, email addresses, physical addresses, and gender of more than

10 million Yahoo users.4

I’d like to think that hackers broke into the system and stole this
information in the dark of night. But in fact, the researcher discovered

the data while sifting through compromised servers on Shodan,5 a
search engine; it turned out the servers containing this data were wide
open and unprotected on the internet. To add insult to injury, the
database also contained a table with a ransom note from an attacker who
had found the exposed servers earlier.

The operations security process would have quickly identified critical
data sets such as these, giving you a much better chance of avoiding
such a situation. The security measures needed to prevent breaches are
neither complex nor expensive and can save you a great deal of
reputational and financial damage in the long run.

Operations Security in Our Personal Lives

The operations security process can be useful not only in both business
and government but also in our personal lives. You may not consciously
work through all the parts of the operations security cycle to protect
your personal data, but you still use some of the methods discussed.

For example, if you’re going on vacation for several weeks and
leaving behind an empty house, you might take steps to ensure some
level of security while you’re gone. You might start by making the
following list of indicators that the house is unoccupied and vulnerable:

No lights on at night

No noise coming from the house

Newspapers building up in the driveway

Mail building up in the mailbox

No car in the driveway

No people coming and going

You might then take steps to ensure that you don’t show your
vulnerabilities so obviously to burglars or vandals. For example, you
could set timers on your lights so that they turn on and off at various
times throughout the house. You may also set a timer on the television
or radio so that you can generate noise that makes it seem like someone
is home. To solve the problem of mail and newspapers stacking up, you
can suspend their delivery while you’re gone. To make the house appear
occupied, you might also have a friend drop by every few days to water
the plants and perhaps move a car in and out of the garage every now
and then.

OPERATIONS SECURITY AND SOCIAL MEDIA

In the age of social networking tools, you see personal operations
security violations on a disturbingly regular basis. Many of these
tools are now equipped with location awareness functionality that
allows our computers and portable devices to report our physical
locations when we update our statuses.

Additionally, people often post that they’re going to lunch,
leaving on vacation, and so on. In both instances, we’ve given the
general public a very clear signal of when we might not be home
or when we might be found at a particular location—a bad practice
from an operational security standpoint.

Although you won’t enforce these OPSEC measures to your
personal data as strictly as the US government, the process is the same.
When it comes to your logical assets, taking these approaches is
especially important.

Your personal information travels through a staggering number of
computer systems and networks. Although you might take steps to
mitigate security threats by being careful about where and how you
share your personal information over the internet, or perhaps by
shredding mail that contains sensitive information before throwing it

away, you’re unfortunately not in control of all the ways your personal
information might be exposed.

As you saw with the SaverSpy breach earlier in this chapter, you can’t
always trust organizations to handle your information carefully. That
said, if you make plans to secure your personal data before breaches
occur, you can at least mitigate the issue to a certain extent. For
instance, you can put monitoring services in place to watch your credit
reports, and you can file fraud reports with these same agencies in the
case of a breach. You can also watch your financial accounts carefully.
Although such steps might not be complex or terribly difficult to carry
out, they can make a big difference if implemented before the problem
has occurred.

Origins of Operations Security

Although the operations security process as implemented in the US
government may be a recent idea, its foundational concepts are ancient.
You can point to nearly any military or large commercial organization
in any period in history and find the principles of operations security
present. In this section, I’ll cover a few examples that were important to
the development of modern operations security.

Sun Tzu

Sun Tzu was a Chinese military general who lived in the sixth century
BCE. For some, Sun Tzu’s work The Art of War is a kind of bible for
conducting military operations. The Art of War has spawned countless
spin-offs, many of which apply the principles it preaches to a variety of
situations, including information security. The text documents some of
the earliest examples of operations security principles. Let’s look at just
a couple of these.

The first passage is, “If I am able to determine the enemy’s
dispositions while at the same time I conceal my own, then I can

concentrate and he must divide.” 6 This is a simple admonition to
discover information held by our opponents while protecting our own.

The second passage is, “(When) making tactical dispositions, the
highest pitch you can attain is to conceal them; conceal your
dispositions, and you will be safe from prying of the subtlest spies, from

the machinations of the wisest brains.” 7 Here, Sun Tzu is saying we
should conduct our strategic planning in an area that is difficult for our
opponents to observe—in this case, the highest point we can find.
Again, he recommends protecting our planning activities so that they
don’t leak to those that might oppose our efforts.

Although written a long time ago, both these passages agree closely
with the laws of operations security that we discussed earlier in the
chapter—namely, know the threats, know what to protect, and then
protect it.

George Washington

George Washington, the first president of the United States, was an
astute and skilled military commander who promoted good operational
security practices. He is known in the operations security community
for having said, “Even minutiae should have a place in our collection,
for things of a seemingly trifling nature, when enjoined with others of a

more serious cast, may lead to valuable conclusion,”8 which means that
even small items of information, which are worthless individually, can
be of great value in combination.

A modern example of this idea is the three main items of information
that constitute an identity: a name, an address, and a Social Security
number. Individually, these items are completely useless. You could take
any one of them in isolation and put it up on a billboard for the world
to see and not be any worse for having done so. In combination,
however, these three items are sufficient for an attacker to steal your
identity and use it for all manners of fraudulent activities.

Washington is also quoted as having said, “For upon Secrecy,
Success depends in most Enterprizes of the kind, and for want of it, they

are generally defeated.”9 In this case, he was referring to an intelligence
gathering program and the need to keep its activities secret. He is often
considered to have been very well informed on intelligence issues and is

credited with maintaining an extensive organization to execute such
activities, long before any such formal capabilities existed.

Vietnam War

During the Vietnam War, the United States realized that information
regarding troop movements, operations, and other military activities
was being leaked to the enemy. Clearly, in most environments, military
or otherwise, having our opponents gain knowledge of our activities is a
bad thing, particularly when lives may be at stake. To stop the leak,

authorities conducted a study, code-named Purple Dragon,10 to
discover its cause.

Ultimately, the study reached two main conclusions: first, in that
environment, eavesdroppers and spies abounded, and second, the
military needed a survey to reveal the extent of the information loss.
The survey asked questions about the information itself and how
vulnerable the information was. The team conducting these surveys and
analyses coined the term operations security and its acronym OPSEC.
Additionally, they saw the need for an operations security group to serve
as a body that would espouse the principles of operations security to the
different organizations within the government and work with them to
get them established.

Business

In the late 1970s and early 1980s, some of the operations security
concepts used in military and government began to take root in the
commercial world. Industrial espionage—spying on business
competition to gain a competitive advantage—is an old practice, but as
the concept became more structured in the military world, it became
more structured in the business world as well. In 1980, Michael E.
Porter, a professor at Harvard Business School, published a book titled
Competitive Strategy: Techniques for Analyzing Industries and Competitors.
This text, now nearing its 60th printing, set the groundwork for what
we now call competitive intelligence.

https://calibre-pdf-anchor.a/#a746

Competitive intelligence is generally defined as conducting intelligence
gathering and analysis to support business decisions. The counterpart of
competitive intelligence, competitive counterintelligence, includes the
operations security principles that were laid out by the government only
a few years previously and is an active part of conducting business to
this day. You can see these principles at work in many large
corporations, as well as in groups such as the Strategic and Competitive

Intelligence Professionals (SCIP)11 professional organization and the
Ecole de Guerre Economique (or Economic Warfare School), located
in Paris.

Interagency OPSEC Support Staff

After the end of the Vietnam War, the group that conducted Purple
Dragon and developed the government OPSEC principles tried to get
support for an organization that would work with the various
government agencies on operations security. They had little success in
interesting the military institutions and were unable to gain official
support from the US National Security Agency. Fortunately, through
the efforts of the US Department of Energy and the US General
Services Administration, they garnered sufficient backing to move
forward. At this point, they drafted a document to put in front of then-
first-term-President Ronald Reagan.

These efforts were delayed due to Reagan’s reelection campaign, but
shortly afterward, in 1988, he signed the Interagency OPSEC Support
Staff (IOSS) into being with the National Decision Security Directive

298.12 Today, the IOSS is responsible for a wide variety of OPSEC
awareness and training efforts, such as the Naval Operations Security

poster shown in Figure 7-2.13

https://calibre-pdf-anchor.a/#a747
https://calibre-pdf-anchor.a/#a748
https://calibre-pdf-anchor.a/#a749

Figure 7-2: OPSEC awareness poster

Summary

The origins of operational security stretches far back into recorded
history. You can find such principles espoused in the writings of Sun
Tzu in the sixth century BCE, in the words of George Washington, in
writings from the business community, and in the US government’s

methodologies. Although formalized operations security processes are a
much more recent creation, the principles on which they are founded
are ancient indeed.

The operations security process consists of five major steps. First,
you start by identifying your most critical information so that you know
what you need to protect. You then analyze your situation to determine
what threats and vulnerabilities exist in your environment. Once you
know your threats and vulnerabilities, you can attempt to determine
what risks you might face. You have a risk whenever your threats and
your vulnerabilities match. When you know the risks, you can plan
countermeasures to mitigate your risks.

To summarize this process, you can also look to the laws of OPSEC
penned by Kurt Haase. His three laws cover some of the high points of
the process you might want to internalize.

You also use the operations security principles used in business and
in government in your personal life, even though you may not do so in a
formal manner. It’s important to identify your critical information and
plan measures to protect it, especially with the sheer volume of personal
information shared through systems and networks.

Exercises

1. Why is it important to identify your critical information?

2. What is the first law of OPSEC?

3. What is the function of the IOSS?

4. What part did George Washington play in the creation of
operations security?

5. In the operations security process, what is the difference between
assessing threats and assessing vulnerabilities?

6. Why might you want to use information classification?

7. When you have cycled through the entire operations security
process, are you finished?

8. From where did the first formal OPSEC methodology arise?

9. What is the origin of operations security?

10. Define competitive counterintelligence.

8

HUMAN ELEMENT SECURITY

In information security, we refer to people as the “weak link” of security
programs. Regardless of the security measures you set, you have little
control over your employees who might click dangerous links, send
sensitive information via unprotected channels, hand over passwords, or
post important data in conspicuous places.

Worse yet, attackers can take advantage of these tendencies to
conduct social engineering attacks that manipulate people to gain
information or access to facilities. These attacks usually rely on the
willingness of people to help others, particularly when faced with
someone who appears to be in distress, someone intimidating (such as a
high-up manager), or someone who seems familiar.

That said, you can take measures to protect your organization from
these attacks by setting appropriate policies and teaching your
employees to recognize danger. In this chapter, you’ll learn about the
kind of data attackers might collect, several types of social engineering
attacks, and how to set up an effective security training program to
inform your staff.

Gathering Information for Social Engineering
Attacks

To protect your organization, you’ll need to know how social engineers
collect data. People can gather information about individuals and
organizations more quickly today than ever before. A staggering wealth
of information exists in online databases, public records, and social
media sites, and in many cases, this data is free for the taking. Many
people post detailed personal information regarding their day-to-day
activities for the entire world to see.

Once an attacker collects information about internal processes,
people, or systems, they can use it to conduct sophisticated attacks. If an
attacker called a company and flat-out asked for a report containing
sensitive sales data, the person on the other end would likely refuse. On
the other hand, if an attacker used social engineering techniques by
calling in a panicked voice and asked for a copy of the latest TPS-13
report from the sales directory on the SalesCom server because they
have a meeting with Mr. Kurosawa in 15 minutes and their laptop just
crashed, they’re more likely to succeed. (This is a social engineering
attack known as pretexting. I’ll discuss it in more detail later in this
chapter.)

It’s worth knowing what kind of information attackers might use in
cases such as the one just discussed. When protecting people and
commercial organizations, you should look at two primary sources of
information: human intelligence and open source intelligence.

Human Intelligence

A chief tool for military and law enforcement organizations across the
world, human intelligence (HUMINT) is data gathered by talking to
people. HUMINT data might include personal observations, people’s
schedules, sensitive information, or any of a number of other similar
items. You can collect HUMINT with hostile techniques such as
torture or by tricking participants with subtle scams. Security
professionals focus on the latter.

For example, you might use HUMINT as the basis for conducting
other social engineering attacks. You could observe the traffic going in
and out of an office building and notice that the office receives frequent
package deliveries and that a shift change happens at 8 AM every
morning, causing many people to enter and exit the building at the
same time. You’d have a much better chance of entering the facility in
an unauthorized manner during this busy time, while dressed in a
familiar delivery uniform.

Open Source Intelligence

Open source intelligence (OSINT) is information collected from publicly
available sources, such as job postings and public records. This publicly
available data can reveal an enormous amount of useful data, including
the technologies in use in a particular organization, the organization’s
structures, and the specific names of people and their positions. OSINT
is one of the primary sources of information on which to base social
engineering attacks.

Résumés and Job Postings

In résumés, you might find work histories, skill sets, and hobbies, which
an attacker can use to set up social engineering attacks based on the
target’s skills or interests. In job listings, companies often expose
information that they would otherwise consider sensitive, including
office and data center locations, network or security infrastructure
details, and the software in use. Recruiters might consider it necessary
to post this information for the hiring process, but attackers can also use
it to plan attacks or add focus to future surveillance efforts.

For example, if you collect information about a company and
determine it runs Windows servers in its cloud hosting environment
and uses CompanyX antivirus software, you’ve just dramatically reduced
the number of variables you must consider when planning attacks
against the company. If you collect additional information about the
location and members of their information security team, you might

also be able to predict the skill level and timing of any responses to your
attack, making your attack more effective.

Social Media

Attackers can easily collect OSINT using social media tools, such as
Facebook and Twitter, by following someone’s activities, finding their
friends and other social contacts, and even tracking their physical
location. They can use this information to monitor people or take more
direct action, such as blackmail. In many cases, younger people tend to
document questionable activities more willingly and may provide a
richer source for this type of information.

Attempts to manipulate the outcome of the 2016 US presidential
election provide an example of how attackers can take advantage of
social media tools. In the months preceding the election, the Russian-
based company Internet Research Agency purchased approximately
3,500 Facebook ads intended to incite tensions among targeted groups
of voters by touching on themes such as race, policing, and
immigration. In February 2018, a US federal grand jury indicted 13

Russians working for Internet Research Agency for these activities.1

This is a classic example of social engineering, which I’ll discuss in
detail later in this chapter.

Public Records

Public records can provide a wealth of information about a target,
including evidence of mortgages, marriages, divorces, legal proceedings,
and parking tickets. Attackers often use this data to conduct additional
searches and locate even more information.

What exactly constitutes a public record can vary based on the
geographical location of the record and the agency that holds it. In the
United States, the laws in each state differ, so information that you may
access legally in one state may be illegal in another.

Google Hacking

Google and other search engines are an excellent resource for
information gathering, particularly when attackers make use of
advanced search operators, such as the following:

site Limits results to a specific site (site:nostarch.com)

filetype Limits results to a specific file type (filetype:pdf)

intext Finds pages containing a words or words (intext:security)

inurl Finds pages containing a word or words in the URL
(inurl:security)

You can combine these operators into a single search to retrieve
specific results. For instance, entering site:nostarch.com
intext:andress security into a search should return the publisher’s page
for this book, as shown in Figure 8-1.

Figure 8-1: Google search operators at work

http://nostarch.com/
http://nostarch.com/

The Google Hacking Database (https://www.exploit-db.com/google-
hacking-database/), shown in Figure 8-2, contains canned Google
searches that make use of advanced search operators to find specific
vulnerabilities or security issues, such as files that contain passwords or
vulnerable configurations and services.

Figure 8-2: The Google Hacking Database

Not only does this provide a set of preassembled searches that you
can click easily, but it also demonstrates some of the more complex ways
that you can use search operators. For example, the bottom search in
Figure 8-2 shows you a combination of three different operators (inurl:,
intext:, and ext:). You could easily switch out the terms to repurpose the
search for your own use.

https://www.exploit-db.com/google-hacking-database/

File Metadata

Metadata is the data about data found in almost any file that can reveal
not only mundane information such as timestamps and file statistics but
also more interesting data such as usernames, server names, network file
paths, and deleted or updated information. File metadata provides data
for searches, sorting, file processing, and so on, and it generally isn’t
immediately visible to users. Many professional forensic tools, such as
EnCase (https://www.guidancesoftware.com/encase-forensic/), have specific
features to quickly and easily recover these data types in forensic
investigations.

Image and video file metadata, called EXIF data, includes
information such as the camera settings and hardware. You can view and
edit EXIF data with ExifTool
(https://www.sno.phy.queensu.ca/~phil/exiftool/), a great cross-platform tool
that works with a wide variety of file types. Especially in document files
that have been around for a while and edited by multiple people, the
amount of metadata that they contain may surprise you. Try
downloading and using it to analyze a few documents or image files.

Image files produced by devices containing Global Positioning
System (GPS) information might also contain location coordinates;
many smartphones embed users’ location information into image files if
they’ve enabled the location setting on the camera, which means
uploading these images to the internet could leak sensitive data.

A multitude of tools exist to assist with information gathering from
OSINT (and other) sources. Two of the more common and well-known
among these tools are Shodan and Maltego.

Shodan

Shodan, shown in Figure 8-3, is a web-based search engine that looks
for information saved on internet-connected devices.

https://www.guidancesoftware.com/encase-forensic/
https://www.sno.phy.queensu.ca/~phil/exiftool/

Figure 8-3: Shodan

Shodan allows you to search for specific information, such as
particular hardware, software, or open ports. For example, if you knew
of a vulnerable version of a specific File Transfer Protocol (FTP)
service, you could ask Shodan for a list of all its instances in its database.
Likewise, you could ask Shodan for everything that it knows about a
domain or server and instantly see where specific vulnerabilities might
be present.

Maltego

Maltego (https://www.paterva.com/), shown in Figure 8-4, is an
intelligence-gathering tool that uses relationships between particular
points of data, called transforms, to discover information related to
information that you already have.

https://www.paterva.com/

Figure 8-4: Maltego

For example, you might start by giving Maltego a website’s domain
name and then use a transform to find names and email addresses listed
on the website. From these names and email addresses, you could find
other addresses and names based on the same mail format elsewhere on
the internet. You could also find the server Internet Protocol (IP)
addresses that host the domain and then find other domains hosted on
the same server.

Maltego displays the results of your search on a graph that shows the
links between each of the items discovered. You can use the graph to
conduct additional searches on specific items by clicking them and
selecting a new transform.

Other Kinds of Intelligence

OSINT and HUMINT are by no means the only kinds of intelligence
you can gather. You may also see references to these other types:

Geospatial intelligence (GEOINT) Geographical information,
typically from satellites.

Measurement and signature intelligence (MASINT)
Measurement and signature data from sensors, such as optical or
weather readers. MASINT contains some sensor-specific kinds of
intelligence, such as RADINT, or information collected from
radar.

Signals intelligence (SIGINT) Data gathered by intercepting
signals between people or systems. You may also see this called
communications intelligence (COMINT) when referring to
communications between people and electronic intelligence
(ELINT) when referring to communications between systems.

Technical intelligence (TECHINT) Intelligence about
equipment, technology, and weapons, often collected with the
purpose of developing countermeasures.

Financial intelligence (FININT) Data about the financial
dealings and transactions of companies and individuals, often
acquired from financial institutions.

Cyber intelligence/Digital network intelligence
(CYBINT/DNINT) Intelligence gathered from computer
systems and networks.

Most other types of intelligence will fit into one of these categories.

Types of Social Engineering Attacks

This section discusses some of the social engineering attacks a person
could conduct with the information gathered in the previous section.

Pretexting

In pretexting, attackers use information they’ve gathered to assume the
guise of a manager, customer, reporter, co-worker’s family member, or

other trusted person. Using a fake identity, they create believable
scenarios that convince their targets to give up sensitive information or
perform actions they wouldn’t normally do for strangers.

An attacker could use pretexting in face-to-face encounters or over
some communication medium. Direct interactions require a heightened
level of attention to details such as body language, while indirect
encounters, such as those conducted over the phone or through email,
require a stronger focus on verbal mannerisms. Both types require good
communication and psychological skills, specialized knowledge, and a
quick mind.

Pretexting gives social engineers an advantage. For example, if the
social engineer can drop names, provide details about the organization,
and give the target sufficient cause to believe that they’re entitled to the
information or access for which they’re asking—or, for that matter, that
they already have it—their chances of success increase substantially.

Phishing

Phishing is a social engineering technique in which an attacker uses
electronic communications such as email, texting, or phone calls to
collect the target’s personal information or install malware on their
system, often by convincing the target to click a malicious link.

The fake sites used in web-based phishing attacks typically resemble
well-known websites, such as banking, social media, or shopping sites.
Some look obviously fake, with poor imitations of the company’s logo
and terrible grammar, while others are extremely difficult to distinguish
from the legitimate page. Fortunately, many browsers have improved
security in recent years and now render phishing attacks more difficult
by showing warnings like the one in Figure 8-5.

Figure 8-5: A phishing warning

Even without these warnings, however, most phishing attacks fail
unless the target has an account on the site being faked; someone who
doesn’t have a MyBank bank account won’t fall for a phishing attack
that redirects to a fake MyBank bank website. Even if the target does
have an account, people have become more cautious of unsolicited
emails from their banks or other websites. In general, phishing attacks
rely on a lack of attention to detail on the recipient’s part, and their rate
of success remains low.

To achieve higher rates of success, attackers may turn to spear
phishing, or targeted attacks against specific companies, organizations, or
people. A spear phishing attack requires advanced reconnaissance so
that the message appears to come from someone the target would trust,

such as human resources staff, a manager, the corporate IT support
team, a peer, or a friend.

While a normal phishing attacks might appear clumsy and poorly
constructed, aimed at tricking a small percentage of a large pool of
recipients, spear phishing attacks take the opposite approach. For
example, spear attackers typically send clean emails containing the
expected logos, graphics, and signature block, and they’ll disguise any
malicious links present. If the attack exists to steal credentials for a site
or service, the attacker may even use the freshly stolen credentials to log
the target into the real site, leaving no error message or broken session
to clue them in that something strange took place.

Tailgating

Physical tailgating, or piggybacking, is the act of following someone
through an access control point, such as secure door, instead of using
the credentials, badge, or key normally needed to enter. The authorized
person may let you in intentionally or accidentally.

Tailgating happens in almost any place that uses technical access
controls, partly because of the carelessness of authorized users and
partly because most people tend to avoid confrontation. A few tricks of
equipment, such as knowing which props to use, and the use of
psychology to allow attackers to play on the sympathies of others will
aid them in their tailgating efforts.

FURTHER RESOURCES ON SOCIAL ENGINEERING

Visit Chris Hadnagy’s website https://www.social-engineer.com/ and
his excellent book Social Engineering: The Science of Human Hacking
for more information about social engineering. Hadnagy goes into
much greater depth than I do here about what social engineering
attacks can do.

https://www.social-engineer.com/

Building Security Awareness with Security Training
Programs

To protect your organization, you’ll have to build security awareness in
your users by instituting a security training program. These programs
often consist of instructor-led or computer-based lessons conducted
during the new-employee onboarding process, followed up with
mandatory quizzes. You might also repeat the training at regular
intervals so the employee retains the information.

This section outlines some of the topics you should typically cover in
these training programs.

Passwords

Although you can use technical tools to make sure users choose strong
passwords, you can’t easily control what users will do with those
passwords. An employee could write their password down and stick it to
the underside of their keyboard, for example, or share it with other
users for convenience’s sake.

Another kind of harmful behavior is using the same password for
multiple accounts. Even if you force a user to create a strong password
on a given system in the workplace, the user might manually
synchronize all other systems in the organization to the same password
(including their virtual private network credentials allowing external
access to the organization’s networks) and then proceed to go home and
do the same with their internet forum credentials, email, and online
gaming passwords to make their life easier. Unfortunately, if an attacker
compromises the password database for their forum and publishes the
user’s email address and decrypted password, the attacker gains access to
a disturbing amount of information—possibly including instructions for
connecting to the company VPN that the user emailed to their home
address.

Poor password hygiene is, unfortunately, a difficult problem to solve
by technical means, and education is one of the best ways of tackling it.
You should push users to create strong passwords even when they’re not

directly forced to do so, tell them not to leave or record their passwords
where they might easily be compromised, and ask them not to use the
same password repeatedly across multiple systems or applications.

Social Engineering Training

Training users to recognize and respond to social engineering attacks
can be an incredibly arduous task because such attacks take advantage of
our behavioral norms and tendencies. Thankfully, public awareness
about phishing emails and fraud in general has grown.

Broadly, you should teach your users to be suspicious of anything
that seems unusual, including atypical requests or emails in their
inboxes and strangers in their working environments, even when these
occurrences seem wrapped in a layer of normalcy.

Ask people to trust but verify when faced with even the slightest
doubt. Your users may flood your security operations center with calls
and emails, but at least they won’t wire thousands of dollars to someone
in a foreign country claiming to be the company vice president who was
mugged while on a sales trip and is in dire need of funds to return
home.

Network Usage

You should discuss proper network usage with your users. As I’ll cover
in Chapter 10, people today have access to a variety of networks, both
wired and wireless, from relatively restricted ones in the workplace to
wide-open networks in homes, coffee shops, and airports.

An uneducated user might assume that connecting a laptop to the
network in a conference room at work is the same as connecting to the
wireless network in a hotel, which is also the same as connecting to a
network in an airport. Generally, people treat accessing networks in the
same way they treat accessing any utility, like the power provided by a
wall outlet or the light given off by a lamp; they expect it to be there
and to function as expected. Beyond this, most people don’t think too
much about the risks present.

You should guide users toward behaviors that will protect the
enterprise network. That means you shouldn’t typically allow foreign
devices to connect to it. Users need to know they can’t allow vendors to
plug in a device in a conference room and that they shouldn’t connect
their iPads to the production network, for example. You should instead
provide a proper alternative network that outside devices can use, like a
guest wireless network, and make sure that users know how to connect
to it, as well as the parameters within which they can use it.

Also, you should restrict the use of corporate resources on outside
networks, a problem that has bitten many organizations badly over
time. If you load your laptop with sensitive data and then connect to the
network at the local coffee shop or hotel, you may accidentally share
this data with everyone else on the network.

An easy technical solution to this problem is to implement a VPN
that allows users to access the corporate network. You should configure
the VPN client to automatically connect the device to the VPN
whenever it finds itself on a foreign network. Additionally, you should
teach your users to avoid connecting devices containing sensitive
information to insecure networks.

Malware

Educating users about malware generally involves teaching them not to
indiscriminately click things. While they’re surfing the web, opening
email attachments, navigating social networks, and using smartphones,
they should look out for the following common red flags:

Email attachments from people they don’t know

Email attachments containing file types that are potentially
executable and could contain malware, such as EXE, ZIP, and PDF

Web links using shortened URLs such as http://bit.ly/ (if in doubt,
they can verify the destination of shortened URLs with tools like
https://linkexpander.com/ or http://unshorten.me/)

Web links with names that differ slightly from those you expect
(myco.org instead of myco.com, for example)

http://bit.ly/
https://linkexpander.com/
http://unshorten.me/
http://myco.com/

Smartphone applications from nonofficial download sites

Pirated software

If you instill a healthy sense of paranoia in your users, they’ll call
your help desk or security team to ask questions before immediately
clicking suspicious links.

Personal Equipment

You should set rules for when and how employees can use personal
equipment in the workplace. Typically, you might allow them to use it
at the border of the organization’s network; that means you’d let them
bring their laptops to work and attach them to a guest wireless network
but not to the same network as the company’s production systems.

You should also be sure to communicate that these policies apply to
devices such as vendor laptops or mobile devices that can connect to
networks.

Clean Desk Policies

A clean desk policy states that sensitive information shouldn’t be left
unattended on a desk for any significant period of time, such as
overnight or during a lunch break. When introducing such a policy, you
should also discuss how to properly dispose of sensitive data stored on
physical media, such as paper or tape, by using shred bins, data
destruction services, and media shredders.

Familiarity with Policy and Regulatory Knowledge

Last, but certainly not least, if you expect your users to follow the rules,
you need to communicate them effectively. You probably won’t actually
educate them if you just send an email to all users containing a link to a
lengthy policy and then have them attest to having read it. Instead, you
might try condensing the most critical part of your policy into a kind of
crib notes or highlights reel to make sure users retain the key points.

Also, if you’re creating a training presentation, you can try to make it
more engaging. For instance, if you have an hour allotted to conducting
security awareness training for newly hired employees, you might
shorten your lecture portion to 30 minutes and then spend the second
half of the time conducting an interactive quiz show–style game on the
material you just covered. Once you’ve added an element of
competition by dividing the class into teams and adding an incentive
(such as prizes for the winners), you’ll have created a more interesting
environment.

You can also get your users’ attention with posters, giveaways of pens
or coffee mugs, and newsletters. If you present the information through
repeated and varied avenues, you’re more likely to educate users in the
long term.

Summary

In this chapter, you explored a variety of issues concerning the human
element of information security: the security issues that you can’t
address by technical means alone. Whether because of mere
carelessness or targeted social engineering attacks, the people who staff
your organizations pose a security challenge that you can’t directly
address with technical controls.

I discussed types of social engineering attacks, and you saw how
attackers put these techniques to use to solicit information or coerce
unauthorized actions from people in your organizations. I also covered
how to build security awareness and training programs. Common issues
to discuss with users include protecting passwords, recognizing social
engineering attacks and malware, using networks and personal
equipment safely, and adhering to a clean desk policy. If you make your
security awareness and training programs engaging, this information is
more likely to stick with users over time.

Exercises

1. Why are people the weak link in a security program?

2. Define tailgating. Why is it a problem?

3. How can you more effectively reach users in your security
awareness and training efforts?

4. Why shouldn’t you allow employees to attach personal equipment
to your organization’s network?

5. How might you train users to recognize phishing email attacks?

6. Why is it important not to use the same password for all your
accounts?

7. What is pretexting?

8. Why might using the wireless network in a hotel with a corporate
laptop be dangerous?

9. Why might clicking a shortened URL from a service such as bit.ly
be dangerous?

10. Why is it important to use strong passwords?

http://bit.ly/

9

PHYSICAL SECURITY

In this chapter, I’ll discuss physical security, which is the set of security
measures that we put in place to protect our people, equipment, and
facilities. In most places, you’ll find physical security measures such as
locks, fences, cameras, guards, and lighting. In higher-security
environments, you might also notice iris scanners, mantraps (an access
control that requires you to step through two locking doors to enter a
building, similar to a phone booth with two entrances), or identification
badges equipped to store certificates.

Physical security involves the protection of three main categories of
assets: people, equipment, and data. Your primary goal, of course, is to
protect people. People are valuable in their own right and are also more
difficult to replace than equipment or data, particularly when they’re
experienced in their field and uniquely familiar with the processes and
tasks they perform.

Although I’ll discuss the protection of people, data, and equipment
as separate concepts in this chapter, the security of each is closely
integrated. You generally can’t—and shouldn’t—develop security plans
that protect any of these categories in isolation from the others.

Many larger organizations protect their assets by implementing sets
of policies and procedures collectively referred to as business continuity
planning (BCP) and disaster recovery planning (DRP). Business
continuity planning refers to the plans you put in place to ensure that
critical business functions can continue in a state of emergency. Disaster
recovery planning refers to the plans you put in place to prepare for a
potential disaster, including what exactly to do during and after a
disaster strikes, such as evacuation routes posted on maps throughout
the facility or signage indicating meeting places in the case of an
evacuation.

Identifying Physical Threats

Before you can implement any physical security measures, however, you
have to identify the threats. Physical security threats generally fall into a
few main categories, as shown in Figure 9-1.

Figure 9-1: Categories of physical threats

Donn Parker defined seven of these categories—extreme
temperature, gases, liquids, living organisms, projectiles, movement,
and energy anomalies—in his book Fighting Computer Crime, where he
also introduces the Parkerian hexad discussed in Chapter 1. (Although
written more than a decade ago, I still consider Parker’s book a must-
read for security practitioners.)

As you move through the sections in this chapter on protecting
people, equipment, and data, I’ll discuss how these threats can affect
each asset, if at all.

Physical Security Controls

Physical security controls are the devices, systems, people, and methods
you put in place to ensure your physical security. There are three main
types of physical controls: deterrent, detective, and preventive. Each has
a different focus, but none is completely separate from the others, as I’ll
discuss shortly. Additionally, these controls work best when used in
concert. No single one of them is sufficient to ensure your physical
security in most situations.

Deterrent Controls

Deterrent controls are designed to discourage people who might seek to
violate your other security controls, and they generally indicate the
presence of other security measures. Examples of deterrent controls
include signs in public places that announce that video monitoring is in
place as well as yard signs with alarm company logos in residential areas,
as shown in Figure 9-2.

Figure 9-2: Deterrent controls

The signs themselves do nothing to prevent people from acting in an
undesirable fashion, but they do point out the potential consequences
for doing so. These measures help keep honest people honest.

Detective Controls

Detective controls, like burglar alarms and other physical intrusion
detection systems, serve to sense and report undesirable events. These
systems typically check for indicators of unauthorized activity, such as
doors or windows opening, glass breaking, movement, and temperature
changes. You could also use them to check for undesirable
environmental conditions such as flooding, smoke and fire, electrical
outages, or contaminants in the air.

Detective systems might also include human or animal guards,
whether they’re physically patrolling an area or monitoring it
secondhand using cameras or other technology, as shown in Figure 9-3.

Figure 9-3: Detective controls

Monitoring using guards has both pros and cons. Unlike
technological systems, living beings may become distracted, and they’ll
have to leave their posts for meals and bathroom breaks. On the other
hand, guards are able to make inferences and judgment calls that can
render them more efficient or perceptive than technological solutions.

Preventive Controls

Preventive controls use physical means to keep unauthorized entities
from breaching your physical security. Mechanical locks are an excellent
example of preventive security because they’re used almost everywhere
to secure businesses, residences, and other locations against
unauthorized entry, as shown in Figure 9-4.

Figure 9-4: Preventive controls

Other preventive controls include high fences, bollards, and, once
again, guards and dogs, which are both detective and preventive. These
controls might focus specifically on people, vehicles, or other areas of
concern, depending on the environment in question.

Using Physical Access Controls

Preventive controls generally make up the core of our security efforts.
In some cases, they may be the only physical security control in place.
For example, many houses have locks on the doors but no alarm systems
or messages that might deter a criminal.

In commercial facilities, you’re much more likely to see all three
types of controls implemented, usually with locks, alarm systems, and
signs indicating the presence of the alarm systems. Following the
principles of defense in depth, the more physical security layers you put
in place, the better off you’ll be.

You should also implement a level of physical security that is
consistent with the value of your asset, as discussed in Chapter 7. If you
have an empty warehouse, it doesn’t make sense to protect it with high-
security locks, alarm systems, and armed guards. Likewise, if you have a
house full of expensive computers and electronics, it doesn’t make sense
to equip it with cheap locks and forgo an alarm system entirely.

Protecting People

Physical security primarily aims to protect the individuals who keep
your business running. In many cases, you can restore your data from
backups, you can build new facilities if the old ones become destroyed
or damaged, and you can buy new equipment, but replacing experienced
people within a reasonable period of time is difficult, if not impossible.

Physical Concerns for People

Compared to equipment, people are rather fragile. They’re susceptible
to nearly the entire scope of physical threats outlined in Figure 9-1.

Extreme temperatures, or even not-so-extreme temperatures, can
quickly become uncomfortable, as can the absence or presence of
certain liquids, gases, or toxins. Even water, in excessive quantities, can
cause harm, like in the massive flooding that took place in the southern
United States during Hurricane Florence in 2018.

Likewise, the lack of a gas such as oxygen, or too much of it, can
become deadly to people very quickly. Certain chemicals benefit us
when they’re used in small amounts to filter the water in your facilities
but are harmful if the chemical ratios or mixtures change.

A variety of living organisms, from larger animals to nearly invisible
molds, fungi, or other microscopic organisms, can be dangerous to
people. Animals might bite or sting people; mold might cause breathing
problems.

Significant movement is harmful to people, particularly when it comes
from an earthquake, mudslide, avalanche, or a building’s structural issue.
Energy anomalies are also very dangerous to people. For example,
equipment with poorly maintained shielding or insulation, or
mechanical or electrical faults, could expose people to microwaves,
electricity, radio waves, infrared light, radiation, or other harmful
emissions. The consequences of such exposures may be immediately
obvious in the case of an electric shock, or they may have long-term
effects in the case of radiation.

Other people can be one of the most severe threats against people.
Someone could physically attack your employees in a dark parking lot.
In certain parts of the world, you might encounter civil unrest. You
could be susceptible to social engineering attacks, like those discussed in
Chapter 8, in which the attacker extracts information from your
personnel to gain unauthorized access to facilities or data.

Smoke and fire can cause burns, smoke inhalation, and temperature
issues (people don’t function well when overheated generally), among
other problems. Particularly in large facilities, smoke and fire can
render the physical layout of the area confusing and make it difficult for
people to navigate their way to safety. The problem could worsen if
your supplies, your infrastructure, or the fabric of the building itself
reacts to the heat and releases toxins, collapses, or produces any of the
other threats discussed in this section.

Ensuring Safety

Because many data centers use dangerous chemicals, gases, or liquids to
extinguish fires, facilities managers often equip fire suppression systems
with safety overrides that prevent them from going off if there are
people in the area. Such measures prioritize protecting human life over
equipment and data.

Evacuation

Likewise, during an emergency, you should prioritize evacuating people
from the facility, not saving the equipment. Planning evacuation
procedures is one of the best ways to keep people safe. The main
principles to consider when planning an evacuation are where, how, and
who.

Where

Consider in advance where you’ll be evacuating to. You need to get
everyone to the same place to ensure that they’re at a safe distance from
the event and that you can account for everyone. If you don’t do this in
an orderly and consistent fashion, you may not be able to ensure
everyone’s safety. Commercial buildings often display their evacuation
meeting places with signs and evacuation maps.

How

Also of importance is the route you’ll follow to reach the evacuation
meeting place. When planning your routes, you should consider the
location of the nearest exit in each area, as well as an alternate
trajectory, in case some passages become blocked during an emergency.
You should also avoid crossing any potentially dangerous or unusable
areas, such as elevators or rooms blocked off automatically by closing
fire doors.

Who

The most vital part of the evacuation, of course, is ensuring that you get
everyone out of the building and that you can account for everyone at
the evacuation meeting place. This process typically requires at least

two designated people: one person to ensure that everyone in the group
has left the premises and another at the meeting place to ensure that
everyone has arrived safely.

Practice

Particularly in large facilities, a full evacuation can be a complicated
prospect. In a true emergency, if you don’t evacuate quickly and
properly, a great number of lives may be lost.

As an example, consider the 2001 attacks on the World Trade Center
in the United States. A study conducted in 2008 determined that only
8.6 percent of the people in the buildings evacuated when the alarms
sounded. The rest remained inside, gathering belongings, shutting

down computers, and performing other such tasks.1 It’s important that
you train your personnel to respond quickly and properly when the
signal to evacuate has been given.

Administrative Controls

Most organizations will also have a variety of administrative controls in
place to protect people. Administrative controls may be policies,
procedures, guidelines, regulations, laws, or similar rules instituted by
any authority, from companies to the federal government.

A common administrative control is background checks companies
use to screen potential candidates for a job. These investigations
typically involve checks for criminal history, verification of previous
employment and education, credit checks, and drug testing, depending
on the position being pursued.

A company may also conduct a variety of reoccurring checks, like
drug tests, on employees. When a person leaves a job, employers often
conduct an exit interview to ensure that the employee has returned all
company property and that any accesses to systems or areas have been
revoked. The company may also ask the individual to sign paperwork
agreeing not to pursue legal action against the company or to sign
additional nondisclosure agreements (NDAs).

Protecting Data

Second only to the safety of your personnel is the safety of your data. As
discussed in Chapter 5, the primary way to protect data is by encrypting
it. Even so, encryption alone isn’t sufficient; an attacker might access the
data by breaking an encryption algorithm or obtaining the encryption
keys. Also, encryption won’t protect data from various physical
conditions.

Following the concept of defense in depth covered in Chapter 1, you
should add additional layers of security to keep your physical storage
media safe against attackers, unfavorable environmental conditions, and
other threats.

Physical Concerns for Data

Adverse physical conditions, including temperature changes, humidity,
magnetic fields, electricity, and physical impact, can harm the integrity
of physical media. Moreover, each type of physical media has strengths
and weaknesses.

Magnetic media, such as hard drives, tapes, and floppy disks, uses a
combination of movement and magnetically sensitive material to record
data. Strong magnetic fields can harm the integrity of data stored on
magnetic media, especially if the media lacks any metal casing, like
magnetic tapes. Additionally, jolting magnetic media while it’s in motion
(being read from or written to) can render the media unusable.

Flash media, or media that stores data on nonvolatile memory chips,
is hardier. If you avoid impacts that might directly crush the chips that
store the data and if you protect the chips from electrical shocks, they’ll
generally withstand conditions that many other types of media wouldn’t.
They’re not terribly sensitive to temperature, so long as the
temperature isn’t extreme enough to destroy the media’s housing, and
they’ll often survive brief immersion in liquid, if properly dried
afterward. Some flash drives are designed specifically to survive extreme
conditions that would normally destroy other media.

Optical media, such as CDs and DVDs, is fragile, as anyone with a
small child can attest to. Even small scratches on the surface of the
media may render it unusable. It’s also highly temperature sensitive,
since it’s constructed largely of plastic and thin metal foil. Outside of a
protected environment, such as a purpose-built media storage vault, any
of a variety of threats may destroy optical media.

When storing media over an extended period, you should consider
technical obsolescence. For example, Sony stopped producing floppy
diskettes in March 2011. Prior to that, the company produced 70

percent of all new floppy diskettes.2 Today, few new computers come
equipped with drives to read them, and in a few short years, finding
hardware to read these disks will become difficult indeed.

Accessibility of Data

Not only do you have to protect the physical integrity of your data, you
must also ensure that the data is available when you need to access it.
This generally means that both your equipment and your facilities must
remain in functioning condition and that the media containing your
data must be usable. Any of the physical concerns I mentioned can
render your data inaccessible as well as unusable.

Some availability issues relate to infrastructure. For example, during
an outage, whether it’s related to network, power, computer systems, or
other components, you may not be able to access your data remotely.
Many businesses operate globally today, so it’s possible that losing the
ability to access data from afar, even temporarily, could have serious
impacts.

To ensure availability of your data, back up the data itself and the
equipment and infrastructure used to provide access to the data. Use
redundant arrays of inexpensive disks (RAID), or RAID array, in a variety
of configurations for your backups. RAID is a method of copying data
to more than one storage device to protect the data if any one device is
destroyed. You can read the original paper describing the basic concept,
“A case for redundant arrays of inexpensive disks (RAID),” at the

Association for Computing Machinery (ACM) Digital Library.3

You can also replicate data from one machine to another over a
network or make copies of data onto backup storage media, such as
DVDs or magnetic tapes.

Residual Data

On the flipside of being able to access data when you need it, you must
be able to render data inaccessible when you no longer need it. For
instance, you’d likely remember to shred a stack of paper containing
sensitive data before you throw it away. But people often forget about
the data stored on electronic media.

In 2016, Blancco conducted a study on 200 used hard drives
purchased from eBay and Craigslist. When researchers analyzed the
contents of the disks, they discovered that many of them still contained
sensitive data, including corporate information, emails, customer
records, sales data, pictures, and Social Security numbers. In many
cases, nobody had attempted to erase the data from the disks at all; in

other cases, they had done so ineffectively.4

In addition to the devices that obviously contain storage and hold
potentially sensitive data, you might find residual data in machines such
as copiers, printers, and fax machines, which may contain volatile or
nonvolatile internal storage, often in the form of a hard drive. In the
hard drive, you might find copies of any processed documents,
including sensitive business data. When you retire these types of devices
from service or send them for repair, be sure to remove the data from
the storage media.

Protecting Equipment

Lastly, protect your equipment and the facilities that house it. This
category falls last on the list because it represents the easiest and
cheapest segment of assets to replace. Even if a major disaster destroyed
your facility and all the computing equipment inside it, you could be
back in working order very shortly, as long as you still had people to run
your operation and access to your critical data.

Although it may take you some time to return to the state you were
in before the incident, you can generally replace floor space or relocate
to another area nearby relatively easily, and computing equipment is
both cheap and plentiful.

Physical Concerns for Equipment

You will find fewer physical threats to equipment than to employees or
data, although they’re still numerous.

Extreme temperatures—especially heat—can harm your equipment. In
environments that contain large numbers of computers and associated
equipment, we rely on environmental conditioning equipment to keep
the temperature down to a reasonable level, typically in the high-60s to
mid-70s on the Fahrenheit scale. (Experts still debate the ideal range.)

Liquids, even in small quantities, like the water in humid air, could
harm equipment. Depending on the liquid in question and the quantity
present, it could cause corrosion in a variety of devices, short-circuits in
electrical equipment, and other harmful effects. Clearly, in extreme
cases like flooding, any immersed equipment will often become
completely unusable.

Living organisms might also damage equipment, although in more
minor ways. Insects and small animals in your facility could cause
electrical shorts, interfere with cooling fans, chew on wiring, and
generally wreak havoc.

DON’T BUG ME

People started using the term bug to indicate problems in
computer systems in September 1947, when someone discovered a
moth shorting two connections in a system together, causing the
system to malfunction. When workers removed the moth, they

described the system as having been debugged.5 You can see the
actual “bug” in question in Figure 9-5.

Figure 9-5: The first computer bug

Movement, in the earth and in the structure of your facilities, can hurt
your equipment. An earthquake is an obvious example of this. Energy
anomalies can be extremely harmful to any type of electrical equipment,
especially if the power is absent or sends the wrong amount of voltage.
Good facility design will provide some measure of protection against
such threats, but you generally can’t mitigate the effects of severe
electrical issues, such as lightning strikes.

Smoke and fire are bad for your equipment, as they introduce extreme
temperatures, electrical issues, movement, liquids (electronics don’t
function well when wet, generally), and a variety of other problems.
Efforts to extinguish fires, depending on the methods used, may cause
as much harm as the fire itself.

Site Selection

When planning a new facility, take into account the facility’s location. If
the site is in an area prone to natural disasters, you may eventually find
your facility to be completely unusable or destroyed. Other
environmental threats could include civil unrest, unstable power or
utilities, poor network connectivity, or extreme temperature conditions.

With proper facility design, you may be able to compensate for some
problems by installing power filtering and generators to counteract
power problems, for instance. But others, such as the local temperature,
may ultimately be out of our control. For certain types of facilities, such
as data centers, it’s important to have a problem-free environment, and
if you encounter significant environmental issues, you may want to look
elsewhere.

Securing Access

When securing access to equipment or facilities, use the concept of
defense in depth by placing security measures at multiple areas, both
inside and outside the facility. Again, the appropriateness of the barriers
you enforce depends on the context. A military installation may have
the highest level of security available; a small retail store may have the
lowest level.

Often, you’ll see physical security measures implemented on the
perimeter of the property. Minimal measures might control vehicle
traffic to make sure it doesn’t enter undesirable places. For example, this
can take the form of security landscaping, which can include trees, large
boulders, and cement planters, placed in front of buildings or next to
driveways to prevent vehicle entry. More secure facilities might also
have fences, concrete barriers, and other more obvious measures. Such
controls are generally deterrents but may be preventive, as well.

The entrance to the facility will likely have locks, whether
mechanical or electronic, on the doors to the building. A typical
arrangement for nonpublic buildings is to keep the main entrance
unlocked during business hours and station a security guard or

receptionist inside. More secure facilities might keep the doors locked
at all times and require a badge or key to enter the building.

Once inside the facility, physical access controls could include locks
on internal doors or individual floors of the building to keep visitors or
unauthorized people from freely accessing the entire facility. Often,
facilities will restrict access to computer rooms or data centers to only
those who specifically need to enter them for business reasons. You may
also find more complex physical access controls in place in such areas,
such as biometric systems.

Environmental Conditions

When it comes to the equipment within your facilities, maintaining
proper environmental conditions is crucial to continued operations.
Computing equipment can be sensitive to changes in power,
temperature, and humidity, as well as electromagnetic disturbances. In
areas with large quantities of equipment, maintaining the proper
conditions can be challenging, to say the least.

People constructing such facilities generally equip them with sources
of emergency electrical power, like generators, as well as systems that
can heat, cool, and moderate the humidity as required. Unfortunately,
these controls are expensive, and smaller facilities might not be
appropriately equipped.

Summary

In this chapter, you learned how to mitigate physical security issues
using deterrent, detective, and preventive measures. Deterrents aim to
discourage those who might violate your security, detective measures
alert you to potential intrusions, and preventive controls physically
prevent intrusions from taking place. None of these controls is a
complete solution by itself, but together, they can put you on stronger
footing.

Protecting people should be your foremost concern in physical
security. Although you can generally replace data and equipment, you

can’t replace people. One of the best ways to protect them is to remove
them from dangerous situations quickly. You can also implement a
variety of administrative controls to keep them safe in their working
environments.

Protecting data should be the next priority in a technology-based
business. Make sure your data is available when you need it and that it’s
completely deleted when you no longer need it. Ensure its availability
by keeping backups, whether by using RAID to protect against storage
media failures or with removable devices, such as DVDs or magnetic
tape.

Protecting your equipment, although the lowest of your priorities, is
still a vital task. When selecting the location of your facility, consider
relevant threats and take steps to mitigate them. Take the necessary
steps to secure access to and within your facility. Lastly, maintain the
environmental conditions appropriate for your equipment.

Exercises

1. What are the three major concerns for physical security, in order of
importance?

2. What are the three main kinds of physical security measures?

3. Why might you want to use RAID?

4. What is physical security’s most important concern?

5. What type of physical access control might you put in place to
block access to a vehicle?

6. Can you give three examples of physical controls that work as
deterrents?

7. Can you give an example of how a living organism might constitute
a threat to your equipment?

8. Which category of physical control might include a lock?

9. What is residual data, and why is it a concern when protecting the
security of your data?

10. What is your primary tool for protecting people?

10

NETWORK SECURITY

A computer network is a group of computers or other devices that are
connected to facilitate the sharing of resources. You likely depend on a
variety of networks to function daily. Networks control and enable
modern automobiles, airplanes, medical devices, refrigerators, and
countless other devices. Networks provide the ability for you to
communicate, navigate road systems, go to school, play games, watch
TV, and listen to music. Without a secure and stable system of
networks, many of the daily conveniences that you enjoy would be made
considerably more difficult to interact with or just fail to function
entirely.

Your networks may face threats from attackers; they may also suffer
from misconfigurations of their infrastructure or network-enabled
devices, or even from simple outages. Most of the world is network
dependent, so losing network connectivity and the services it provides
can suffocate you. At worst, it can devastate your business.

In January 2017, civil unrest in Cameroon reached a high point
when large-scale protests erupted over the dominance of French in a
country where both French and English are official languages. In what

appears to have been an attempt to rein in the protestors, the
government deliberately disconnected large, primarily English-speaking
areas of the country from the global networks that comprise the
internet. These regions remained offline for 93 days before the

government restored access.1 These types of outages can have wide-
reaching impacts across industries, disrupting medical care,
communications, employment, education, shopping, and many other
aspects of people’s lives.

Although the situation in Cameroon may be an extreme example,
smaller network outages and other malfunctions cause serious impacts
all over the world every day. Some of these problems may result from
technical issues. Others may result from the specific distributed denial-of-
service (DDoS) attacks (DoS attacks that originate from many distributed
sources) I’ll discuss in this chapter, or from temporary causes entirely
unknown to the network users.

This chapter will cover the infrastructure and devices you can put in
place to secure your networks and the methods you can use to protect
the network traffic itself. You’ll also learn about tools that can help
verify your security.

Protecting Networks

You can use two methods to protect your networks and network
resources. One option is to design your networks securely by laying
them out so they’re resistant to attack or technical mishap. You can also
implement a variety of devices, such as firewalls and intrusion detection
systems, in and around your networks.

Designing Secure Networks

By designing your networks properly, you can prevent some attacks
entirely, mitigate others, and, when you fail, fail in a graceful way.

One strategy for reducing the impact of attacks is network
segmentation. When you segment a network, you divide it into multiple
smaller networks called subnets. You can control the flow of traffic

between subnets, allowing or disallowing it based on a variety of factors
or even blocking the flow of traffic entirely if necessary. Properly
segmented networks can boost network performance by containing
certain traffic to the portions of the network that need to see it, and
they can help you localize technical network issues. Additionally,
network segmentation can prevent unauthorized network traffic or
attacks from reaching particularly sensitive portions of the network.

You can also secure your networks by funneling traffic through choke
points, or locations where you can inspect, filter, and control the traffic.
The choke points might be the routers that move traffic from one
subnet to another, the firewalls that filter traffic through your networks
or portions of your networks, or the application proxies that filter the
traffic for applications such as web or email. I’ll discuss some of these
devices at greater length in the next section of this chapter.

Creating redundancies when designing your networks can also help
mitigate issues. Certain technical failures or attacks may render portions
of your technology—including networks, network infrastructure
devices, or border devices such as firewalls—unusable. For example, if
one of your border devices is subjected to a DDoS attack, you can’t do
much to stop it. You can, however, switch to a different internet
connection or route traffic through a different device until you can
come to a longer-term solution.

Using Firewalls

A firewall is a mechanism for maintaining control over the traffic that
flows in and out of networks. One of the first papers to discuss the idea
was “Simple and Flexible Datagram Access Controls,” written in 1989

by Jeffrey Mogul,2 then at Digital Equipment Corporation. In 1992,
Digital Equipment Corporation created first commercial firewall, the

DEC SEAL.3

You typically place firewalls at points where the level of trust
changes, like the border between an internal network and the internet,
as shown in Figure 10-1. You may also install a firewall on your internal

network to prevent unauthorized users from accessing network traffic of
a sensitive nature.

Figure 10-1: Firewall placement

Many of the firewalls in use today work by examining the packets
(blocks of data) moving through the network to determine which ones it
should allow in or out. They base their decision on a variety of factors.
For example, they might allow or disallow traffic depending on the
protocol being used to let web and email traffic pass but block
everything else. I’ll go over the types of firewalls in this section.

Packet Filtering

In packet filtering, one of the oldest and simplest firewall technologies,
the firewall looks at the contents of each packet in the traffic
individually and either allows or disallows it based on the source and
destination IP addresses, the port number, and the protocol being used.

Since the packet filtering firewall examines each packet individually
and not in concert with the rest of the packets making up the traffic, an
attacker could slip attacks through this type of firewall by sending attack

traffic that spans more than one packet. To find these, you need to
employ more complex methods of detection.

Stateful Packet Inspection

Stateful packet inspection firewalls, or stateful firewalls, function on the
same general principle as packet filtering firewalls, but they can keep
track of the traffic at a granular level. While a packet filtering firewall
examines an individual packet out of context, a stateful firewall can
watch the traffic over a given connection. A connection is defined by the
source and destination IP addresses, the ports being used, and the
already existing network traffic.

A stateful firewall uses a state table to keep track of the connection
state (the normal sequence of traffic) and allows traffic that is part of a
new or already established connection only. This can help to prevent
some intentionally disruptive attack traffic that doesn’t resemble a
proper and expected connection. Most stateful firewalls can also
function as packet filtering firewalls, and they often combine the two
forms of filtering. In addition to packet filtering features, stateful
firewalls might also identify and track the traffic related to a user-
initiated connection to a website, and they’ll know when the connection
has been closed, meaning no further legitimate traffic would be present.

Deep Packet Inspection

Deep packet inspection firewalls add yet another layer of intelligence to
your firewall capabilities because they can analyze the actual content of
the traffic that flows through them. While packet filtering firewalls and
stateful firewalls can look at only the structure of the network traffic to
filter out attacks and undesirable content, deep packet inspection
firewalls can reassemble the contents of the traffic to see what it will
deliver to the application for which it’s destined.

To use an analogy, when you ship a package, the parcel carrier will
look at the size and shape of the package, how much it weighs, how it’s
wrapped, and the sending and destination addresses. This is generally
what packet filter firewalls and stateful firewalls do. In deep packet

inspection, the parcel carrier would do all of this as well as open the
package, inspect its contents, and then make a judgment about whether
to ship it.

Although this technology has great promise for blocking many
attacks, it also raises privacy concerns. In theory, someone in control of
a deep packet inspection device could read every one of your email
messages, see every web page exactly as you saw it, and easily listen in
on your instant messaging conversations.

Proxy Servers

Proxy servers are special kinds of firewall that pertain specifically to
applications. These servers provide security and performance features,
generally for an application, such as mail or web browsing. Proxy
servers can provide a layer of security for the devices behind them by
serving as choke points, and they allow you to log the traffic that goes
through them for later inspection. They are a single source for requests.

Many companies rely on proxy servers to keep spam from reaching
their users’ email accounts and lowering productivity, to keep
employees from visiting websites that might have objectionable
material, and to filter out traffic that might indicate the presence of
malware.

DMZs

A demilitarized zone (DMZ) is a layer of protection that separates a
device from the rest of a network. You accomplish this by using multiple
layers of firewalls, as shown in Figure 10-2. In this case, the internet-
facing firewall might allow traffic through to a web server sitting in the
DMZ, but the internal firewall would not allow traffic from the internet
through to the internal servers.

Figure 10-2: A DMZ

The DMZ creates a zone that allows public-facing servers to be
accessed from the outside while both providing a measure of protection
for them and restricting traffic from those servers from penetrating the
more sensitive portions of your network. This helps to prevent the
scenario where attackers compromise your public-facing servers and use
them to attack the other servers behind them.

Implementing Network Intrusion Detection Systems

Intrusion detection systems (IDS) are hardware or software tools that
monitor networks, hosts, or applications for unauthorized activity. You
can classify IDS based on the way they detect attacks: signature-based
detection and anomaly-based detection.

Signature-based IDS work like most antivirus systems. They maintain
a database of the signatures that might signal an attack and compare
incoming traffic to those signatures. In general, this method works well
—except when an attack is new or has been specifically constructed to
not match existing attack signatures. One of the large drawbacks to this
method is that if you don’t have a signature for the attack, you may not

see it at all. In addition to this, the attacker crafting the traffic may have
access to the same IDS tools you’re using and may be able to test the
attack against them to specifically avoid your security measures.

Anomaly-based IDS typically work by determining the normal kinds
of traffic and activity taking place on the network. They then measure
the present traffic against this baseline in order to detect patterns that
aren’t present in the traffic normally. This method can detect new
attacks, or attacks that have been deliberately assembled to avoid IDS,
very well. On the other hand, it may produce a larger number of false
positives than a signature-based IDS because it might flag legitimate
activity that causes unusual traffic patterns or spikes in traffic.

You can, of course, install an IDS that uses both the signature-based
and anomaly-based methods, giving you some of the advantages of each
type of detection. This would detect attacks more reliably, although it
would perhaps operate a bit more slowly and cause a lag in detection.

You typically attach a network IDS to a location where it can
monitor the traffic going by, but you need to place them carefully so the
quantity of data to examine won’t overloaded it. Putting a network IDS
behind another filtering device, such as a firewall, can eliminate some of
the obviously unwanted traffic.

Since network IDS typically examine a large amount of traffic, they
can generally do only a relatively cursory inspection of it, and they may
miss some types of attacks, especially those that are specifically crafted
to pass through such inspections. Packet crafting attacks use packets of
traffic that carry attacks or malicious code but are designed to avoid
detection by IDS, firewalls, and other similar devices.

Protecting Network Traffic

In addition to protecting your networks from intrusion, you need to
separately protect the traffic that flows over them. When you send data
over networks that aren’t secure or trusted, an eavesdropper can glean a
large amount of information from what you send. If you use
applications or protocols that don’t encrypt the information they’re

sending, you may end up giving away your login credentials, credit card
numbers, banking information, and other data to anyone who happens
to be listening.

Attackers can intercept data from both wired and wireless networks,
often with little effort, depending on the design of the network. But
although insecure networks are a security problem, they’re not an
insurmountable one, if you have the right tools.

Using Virtual Private Networks

Virtual private networks (VPNs) can help you send sensitive traffic over
insecure networks. Often called a tunnel, a VPN connection is an
encrypted connection between two points. You usually create the
connection using a VPN client application on one end and a device
called a VPN concentrator on the other end—a client and server, in
simple terms. The client uses the VPN client application to
authenticate to the VPN concentrator, usually over the internet. Once
you’ve established a connection, all traffic exchanged from the network
interface connected to the VPN flows through the encrypted VPN
tunnel.

VPNs can allow remote workers to access the internal resources of
their organization; in that case, the worker’s device acts as though it
were connected directly to the organization’s internal network.

You could also use VPNs to protect or anonymize the traffic you’re
sending over untrusted connections. Companies such as StrongVPN
(https://strongvpn.com/) sell their services to the public for exactly such
purposes. You might use these to keep your internet service provider
from logging the contents of your traffic, stop people on the same
network from eavesdropping on your activity, or obscure your
geographical location and bypass location-oriented blocking. People
who use peer-to-peer (P2P) file-sharing services to share pirated media
sometimes hide their traffic and IP addresses with VPNs.

Protecting Data over Wireless Networks

https://strongvpn.com/

If you use wireless networks to send your data, you face several specific
security risks. Today, a wide variety of places provide free wireless
internet access. In general, public wireless networks are set up without a
password or encryption of any kind—measures you’d normally put in
place to protect the confidentiality of the traffic flowing over the
network. Even in cases where accessing a network does require a
password, like in a hotel, everyone else connected to the hotel’s network
could potentially see your data. The present record for the range of an

unamplified 802.11 wireless connection is about 238 miles.4

In addition, it’s possible for someone to attach wireless devices to
your network without your knowledge. Unauthorized wireless access
points, commonly known as rogue access points, present a serious security
issue. For example, if you worked in an area that banned wireless
connections, such as a secure government facility, an enterprising
individual could decide to bring in an access point of his own and install
it under his desk to provide wireless access to a nearby outdoor smoking
area. Although he might have good intentions, his simple action might
have invalidated an entire set of carefully planned network security
measures.

If the rogue access point were set up with poor security or no
security at all, the well-intentioned access point installer would provide
anyone within range with an easy path directly into the network that
bypassed any border security in place. It’s possible that a network IDS
might pick up the activity from the rogue access point, but you can’t
guarantee that it will. A better solution to finding rogue equipment is to
carefully document the legitimate devices that are part of the wireless
network infrastructure and regularly scan for additional devices using a
tool such as Kismet, which I’ll discuss later in this chapter.

When it comes to the legitimate and authorized devices on your
network, your chief method of protecting the traffic that flows through
them is with encryption. You can separate the encryption used by
802.11 wireless devices—the most common family of wireless network
devices—into two major categories: Wired Equivalent Privacy (WEP)
and Wi-Fi Protected Access (WPA, WPA2, and WPA3). WPA3 is the
current standard. Compared to the other common encryption types,

WPA3 makes it easier to set up client devices and offers stronger
encryption, improving protections against brute-force attacks and

eavesdropping.5

Using Secure Protocols

One of the simplest and easiest ways you can protect your data is by
using secure protocols. Many of the more common and older protocols,
such as File Transfer Protocol (FTP) for transferring files, Telnet for
interacting with remote machines, and Post Office Protocol (POP) for
retrieving email, handle data insecurely. Such protocols often send
sensitive information, such as logins and passwords, in cleartext
(unencrypted data) over the network. Anyone listening on the network
can pick up the traffic from such protocols and easily glean the sensitive
information.

Many insecure protocols have secure equivalents, as I’ll discuss at
greater length in Chapter 13. In brief, you can often find a secure
protocol for the type of traffic you want to carry. Instead of operating
over the command line with Telnet, you can use Secure Shell (SSH),
and instead of transferring files with FTP, you can use Secure File
Transfer Protocol (SFTP), which is based on SSH.

SSH is a handy protocol for securing communications because you
can send many types of traffic over it. You can use it for file transfers
and terminal access, as mentioned, and to secure traffic in a variety of
other situations, such as when connecting to a remote desktop,
communicating over a VPN, and mounting remote file systems.

Network Security Tools

You can use a broad variety of tools to improve your network security.
Attackers rely on many of the same tools to penetrate networks, so by
using them to locate security holes in your networks, you can
preemptively keep the attackers out.

An enormous number of security tools are on the market today, and
many of them are free or have free alternatives. Many run on Linux

operating systems and can be a bit difficult to configure. Fortunately,
you can use these tools without having to set them up by installing one
of the Security Live CD distributions, which are versions of Linux that
come with all the tools preconfigured. One of the better-known
distributions is Kali, available for download at https://www.kali.org/.

As I discussed in earlier chapters, the key to assessing vulnerabilities
is to conduct assessments thoroughly and regularly enough that you can
find the holes before the attackers do. If you perform penetration
testing only on an occasional and shallow basis, you’ll likely not catch all
the issues present in your environment. Additionally, as you update,
add, or remove the various network hardware devices and the software
running on them, the vulnerabilities present in your environment will
change. It’s also worth noting that most of the tools you’re likely to use
will be capable of finding only known issues. New or unpublished
attacks or vulnerabilities, commonly known as zero-day attacks, can still
take you by surprise.

Wireless Protection Tools

As I discussed earlier in the chapter, attackers who can access your
network via a wireless device could bypass all your carefully planned
security measures. If you don’t take steps to protect against
unauthorized wireless devices, such as rogue access points, you could
allow a large hole in your network security and never know it.

You can use several tools to detect wireless devices. One of the best-
known tools for detecting such devices is called Kismet. It runs on
Linux and macOS and can also be found on the Kali distribution.
Penetration testers commonly use Kismet to detect wireless access
points and can find them even when they’re well-hidden.

Other tools enable you to break through the different kinds of
encryption in use on wireless networks. A few of the more common
ones, for cracking WEP, WPA, and WPA2, include coWPAtty and
Aircrack-NG.

Scanners

https://www.kali.org/

Scanners, mainstays of the security testing and assessment industry, are
hardware or software tools that enable you to interrogate devices and
networks for information. You can divide scanners into two main
categories: port scanners and vulnerability scanners. These types
sometimes overlap, depending on the specific tool.

In network security, people tend to use scanners as tools for
discovering the networks and systems in an environment. One of the
more famous port scanners is a free tool called Nmap, short for network
mapper. Although generally considered a port scanner, Nmap can also
search for hosts on a network, identify the operating systems those hosts
are running, and detect the versions of the services running on any open
ports.

Packet Sniffers

A network or protocol analyzer, also known as a packet sniffer or just
plain sniffer, is a tool that can intercept (or sniff) traffic on a network.
The sniffer listens for any traffic that your computer or device’s network
interface can see, whether you were intended to receive it or not.

NOTE

Sniffer (with a capital S) is a registered trademark of NetScout (previously
Network General Corporation). I use the term sniffer in the generic sense
in this book.

To use a sniffer, you have to place it on the network in a position that
allows you to see the traffic you’d like to sniff. In most modern
networks, the traffic is segmented in such a way that you’ll likely not be
able to see much of it at all (other than the traffic you generate from
your own machine). That means you’ll likely need to gain access to one
of the higher-level network switches and may need to use specialized
equipment or configurations to access your target traffic.

A classic sniffer invented in the 1980s, Tcpdump, is a command-line
tool. It has a few other key features, such as the ability to filter traffic.

Tcpdump runs only on UNIX-like operating systems, but Windows
systems can run a version of the tool called WinDump.

Previously known as Ethereal, Wireshark is a fully featured sniffer
capable of intercepting traffic from a wide variety of wired and wireless
sources. It has a graphical interface, shown in Figure 10-3, and includes
many filtering, sorting, and analysis tools. It’s one of the more popular
sniffers on the market today.

Figure 10-3: Wireshark

You can also use Kismet, a tool discussed earlier in this chapter, to
sniff from wireless networks.

Packet sniffers also come in hardware form, such as the OptiView
Portable Network Analyzer from Fluke Networks. Although well-
equipped portable analyzers such as this may provide benefits, such as
increased capture capacity and capabilities, they’re often expensive, well
beyond the budget of the average network or security professional.

Honeypots

A somewhat controversial tool in the network security arsenal, a
honeypot is a system that can detect, monitor, and sometimes tamper
with the activities of an attacker. You configure them to deliberately
display fake vulnerabilities or materials that would make the system
attractive to an attacker, such as an intentionally insecure service, an
outdated and unpatched operating system, or a network share named
“top-secret UFO documents.”

When attackers access the system, the honeypot monitors their
activity without their knowledge. You might set up a honeypot to
provide an early warning system for a corporation, to discover an
attacker’s methods, or as an intentional target to monitor the activities
of malware in the wild.

You can also expand honeypots into larger structures by creating
networks of them, called honeynets. A honeynet connects multiple
honeypots with varying configurations and vulnerabilities, generally
with some sort of centralized instrumentation for monitoring all the
honeypots on the network. Honeynets can be particularly useful for
understanding malware activity on a large scale since you can reproduce
a variety of operating systems and vulnerabilities.

An excellent resource for more information on honeypots and
honeynets is the Honeynet Project at https://www.honeynet.org/. The
Honeynet Project provides access to a variety of resources, including
software, the results of research, and numerous papers on the subject.

Firewall Tools

In your kit of network tools, you may also find it useful to include tools
that can map the topology of firewalls and help you locate
vulnerabilities in them. Scapy (https://github.com/secdev/scapy/) is a well-
known and useful tool for such efforts. It can construct specially crafted
Internet Control Message Protocol (ICMP) packets that evade some of
the normal measures put in place to prevent you from seeing the devices
that are behind a firewall and may allow you to enumerate some of

https://www.honeynet.org/
https://github.com/secdev/scapy/

them. You can also script Scapy’s abilities to manipulate network traffic
and test how firewalls and IDS respond, which could give you an idea of
the rules on which they’re operating.

You could use some of the other tools I’ve discussed in this section to
test the security of your firewalls, as well. You can use port and
vulnerability scanners to look at them from the outside to find any ports
that are unexpectedly open or any services running on your open ports
that are vulnerable to known attacks. You can also use sniffers to
examine the traffic that is entering and leaving firewalls, presuming that
you can get such a tool in place in a network location that will enable
you to see the traffic.

Summary

When you protect your networks, you should do so from a variety of
angles. You should use secure network design to ensure that you’ve
properly segmented your networks, that you have choke points to
monitor and control traffic, and that you create redundancies where you
need them. You should also implement security devices such as firewalls
and IDS to protect yourself both inside and outside the networks.

In addition to protecting the networks themselves, you also need to
protect your network traffic. To do this, you can use VPNs to secure
your connections when using untrusted networks, implement security
measures specific to wireless networks, and apply secure protocols.

A variety of security tools can help you keep your networks secure.
When working with wireless networks, you can use Kismet. You can
also listen in on network traffic with Wireshark or Tcpdump, scan for
devices on your networks with Nmap, and test your firewalls using
Scapy and other similar utilities. You can also place devices called
honeypots on your networks specifically to attract the attention of
attackers and then study them and their tools.

Exercises

1. For what might you use the tool Kismet?

2. Explain the concept of segmentation.

3. What are the three main types of wireless encryption?

4. What tool might you use to scan for devices on a network?

5. Which tools can you use to sniff traffic on a wireless network?

6. Why would you use a honeypot?

7. Explain the difference between signature and anomaly detection in
IDS.

8. What would you use if you needed to send sensitive data over an
untrusted network?

9. What would you use a DMZ to protect?

10. What is the difference between a stateful firewall and a deep packet
inspection firewall?

11

OPERATING SYSTEM SECURITY

When you seek to protect your data, processes, and applications against
concerted attacks, you’re likely to find weaknesses on the operating
system that hosts all of these. The operating system is the software that
supports the basic functionality of the device. The primary operating
systems in current use are several varieties of Linux and the server and
desktop operating systems offered by Microsoft and Apple. If you don’t
take care to protect your operating systems, you have no basis for
getting to a strong security footing.

You can mitigate threats to the operating system in several ways. One
of the easiest methods is operating system hardening, or the process of
decreasing the number of openings through which an attacker might
reach you. You can use this technique when you’re configuring hosts
(individual computers or network devices) that might face hostile action.

You can also add applications to your operating system designed to
combat some of the tools attackers might use against you. The most
common and obvious of these, particularly on internet-facing devices,
are the anti-malware tools that protect you from malicious code. The
software firewalls and host-based intrusion detection systems discussed

in earlier chapters can also block unwanted traffic or alert you when it
passes through your systems.

Other security tools can detect potentially vulnerable areas on your
hosts by finding services that you didn’t know were running, locating
network services known to contain exploitable flaws, and generally
inspecting your systems.

By applying the concept of defense in depth and combining these
efforts, you can mitigate many of the security issues on the hosts for
which you’re responsible.

Operating System Hardening

A relatively new concept in information security, operating system
hardening is a technique that aims to reduce the number of available
avenues through which your operating system might be attacked. We

call the sum of these areas the attack surface.1 The larger your attack
surface is, the greater chance an attacker has of successfully penetrating
your defenses.

You can decrease your attack surface in six main ways, as shown in
Figure 11-1.

Figure 11-1: The six primary means of operating system hardening

I’ll walk you through each of these strategies.

Remove All Unnecessary Software

Each piece of software installed on your operating system adds to your
attack surface. If you’re seeking to harden your operating system, you
should take a hard look at the software you load onto it and ensure that
you’re installing the bare minimum.

If you’re preparing a web server, for instance, you’ll need to install
the web server software, any libraries or code interpreters needed to
support the web server, and any utilities that involve the administration
and maintenance of the operating system, such as backup software or
remote access tools. You have no reason to install anything else.

MEASURE TWICE, CUT ONCE

Always exercise great care when making changes to operating
system settings, tools, and software. Some of the changes you
make could have unintended effects on the way your operating
system functions, and you don’t want to learn this through
experience on a machine that services a critical function. Research
changes carefully before you make them.

Problems begin to arise once you install other software on the
machine, even with the best of intentions. For example, let’s say that
one of your developers logs into the server remotely. They need to
make a change to a web page, so they install the web development
software they need. Then they need to evaluate the changes, so they
install their favorite web browser and the associated media plug-ins,
such as Adobe Flash and Acrobat Reader, as well as a video player to test
some video content. Soon, not only does the system contain software
that shouldn’t be there, but the software quickly becomes outdated since
it isn’t patched or updated as a result of not being officially supported
and maintained by the IT department. At this point, you have a
relatively serious security issue on an internet-facing machine.

Remove All Unessential Services

In the same vein, you should also remove or disable unessential services
(software that loads automatically when the system starts). Many
operating systems ship with a wide variety of services to share
information over the network, locate other devices, synchronize the
time, allow you to access or transfer files, and perform other tasks.
Various applications might also install some services to provide the tools
and resources they need to function.

Attempting to turn off services can be a frustrating exercise, and it
might take some experimentation. In many cases, the services’ names
don’t indicate their actual function, and tracking down what each of
them does may require a bit of research. One of the best ways to start is
to determine the network ports on which the system is listening for
network connections, as this can often give you a clue as to what might
be on the back end of the open port. For instance, if the system is
listening on port 80, you’re likely looking for a web server service.
Many operating systems have built-in utilities that allow you to do this,
such as netstat on Microsoft operating systems or Nmap, discussed in
Chapter 10.

In addition to locating the devices on your networks, Nmap can
allow you to determine network ports on which a given system is
listening. (To install Nmap, download it from https://nmap.org/.) Run
the following Nmap command in your system’s command line:

nmap <IP address>

Replace <IP address> with your device’s IP address. You’ll see results
like those shown in Figure 11-2.

https://nmap.org/

Figure 11-2: Locating services using Nmap

Figure 11-2 reveals several common services running on the system,
listed here:

Port 21 File Transfer Protocol (FTP), which allows files to be
transferred

Port 23 Telnet, which allows remote access to the device

Port 80 Hypertext Transfer Protocol (HTTP), which serves web
content

Port 443 Hypertext Transfer Protocol Secure (HTTPS), which
serves web pages secured with Secure Sockets Layer (SSL) or
Transport Layer Security (TLS)

Several other ports are open as well, running services that indicate
that the device in the example is a printer. You can use this information
as a starting place for closing undesirable services. For example, if you
didn’t intend to allow remote access to the system or serve web content,
you’d want to take note of the fact that ports 21, 23, 80, and 443 are
open. From there, you could attempt to reconfigure it in order to not
run the unneeded services.

Alter Default Accounts

Many operating systems come with standard accounts. These usually
include the equivalent of a guest account and an administrator account.
There might also be others, such as accounts intended for support
personnel or to allow specific services or utilities to operate.

In some cases, the default accounts may come equipped with
excessively liberal permissions regulating the actions they can carry out,
which can cause a great deal of trouble when an informed attacker gains
access to them. The default accounts might have a standard password or
no password at all. If you allow these accounts to remain on the system
with their default settings, attackers might be able to stroll right in and
make themselves at home.

To mitigate these security risks, you should first decide whether you
need these default accounts at all and disable or remove any you won’t
be using. You can usually turn off or remove guest accounts and support
accounts without causing problems. In the case of administrative
accounts, which often have names such as administrator, admin, or root,
you may not be able to safely remove them from the system without
causing it to malfunction, or the operating system may prevent you
from doing so. However, you might be able to rename these accounts to
confound attackers who attempt to make use of them. Lastly, you
shouldn’t leave a default password on any account, no matter its status,
since those passwords are often documented and well known.

Apply the Principle of Least Privilege

As discussed in Chapter 3, the principle of least privilege dictates that
you should allow a party only the absolute minimum permission needed
for it to carry out its function. Operating systems may put this concept
into practice to varying extents.

Most modern operating systems separate tasks into those that
require administrative privileges and those that don’t. In general,
normal operating system users can read and write files, and perhaps
execute scripts or programs, but they can do so only within a certain

restricted portion of the file system. They generally can’t modify the
way hardware functions, make changes to the files on which the
operating system itself depends, or install software that can change or
affect the entire operating system. You typically need administrative
access to perform those activities.

The administrators of UNIX and Linux-like operating systems tend
to strictly enforce these roles. Although the administrators could allow
all users to act with the privileges of an administrator, they rarely do so.
On Microsoft operating systems, the exact opposite is typically true.
Administrators of a Windows operating system are typically more apt to
give users administrative rights. While Microsoft has gotten better at
making its operating systems usable by, and useful for,
nonadministrative users, there is still a large difference in mind-set
between the two camps of administrators.

When you allow the average system user to regularly function with
administrative privileges, you leave yourself open to a wide array of
security issues. If the user executes a malware-infected file or
application, they do so as the administrator, which means that the
program has considerably more freedom to alter the operating system
and other software installed on the host. If an attacker compromises a
user’s account and that account has been given administrative rights, the
attacker now has keys to the entire system. Nearly any type of attack,
launched from nearly any source, will have more impact when allowed
access to administrative rights on a host.

If, instead, you limit the privileges on your systems to the minimum
needed in order for users to perform their required tasks, you’ll go a
long way toward mitigating many security issues. In many cases, attacks
will fail entirely when an attacker attempts to run them from a user
account with a limited set of permissions. This is a cheap and easy
security measure you can put in place, and it’s simple to implement.

Perform Updates

To maintain strong security, you must perform regular and timely
updates to your operating systems and applications. Researchers publish

new attacks on a regular basis, and if you don’t apply the security
patches released by the operating system and application vendors to
mitigate those vulnerabilities, you’ll likely fall victim to attacks quickly.

To see an example of this in action, take a look at the news regarding

malware propagating over the internet at any given time.2 Many pieces
of malware continue to spread by exploiting known vulnerabilities that
have long since been patched by the software vendors. Although it pays
to be prudent when planning to install software updates and it’s a good
idea to test them thoroughly before doing so, it’s generally unwise to
delay updating for long.

One of the most crucial times to ensure that your system is properly
patched is directly after you’ve finished installing it. If you connect a
newly installed and completely unpatched system to your network, it
may become compromised in short order, even on internal networks,
because it lacks the latest patches and secure configurations. The best
practice in such a situation is to download the patches onto removable
media and use this media to patch the system before you connect it to a
network.

Turn On Logging and Auditing

Last, but certainly not least, you should configure and turn on the
appropriate logging and auditing features for your system, such as those
that record failed login attempts. Although the steps for configuring
such services may vary slightly depending on the operating system in
question and its intended use, you generally need to be able to keep an
accurate and complete record of the important processes and activities
that take place on your systems. You should log significant events, such
as administrative privileges being exercised, users logging in to and out
of the system (or failing to log in), changes made to the operating
system, and similar activities.

You may also want to include additional features to supplement the
tools built into the operating system for these purposes. You could
install monitoring tools that alert you to issues with the system itself or
anomalies that might show in the various system or application logs.

You could also install supplementary logging architecture to monitor
the activities of multiple machines or simply to maintain duplicate
remote copies of logs outside the system to help ensure that you have an
unaltered record of all activities.

It’s also important to note that reviewing the logs is a vital part of the
process. If you collect logs but never review them, you might as well not
collect them at all.

Protecting Against Malware

A mind-boggling amount of malware exists on the world’s networks,
systems, and storage devices. Using these tools, attackers can disable
systems, steal data, conduct social engineering attacks, blackmail users,
and gather intelligence, among other attacks.

One particularly complex and impactful example of recent malware
is Triton. First discovered in November 2017, it apparently attempted
to subvert the mechanisms in industrial systems that respond to
abnormal operating conditions and then potentially cause direct harm

to them.3 The device that Triton targets exists in a variety of systems,
including nuclear facilities, and has the potential to cause catastrophic
damage.

To protect your operating systems from malware, you can use some
of the tools outlined here.

Anti-malware Tools

Like the intrusion detection systems discussed in Chapter 10, most anti-
malware applications detect threats by either matching a file to a
signature or detecting unusual activities. Anti-malware tools tend to
depend more heavily on signatures than on anomaly detection (often
called heuristics in the anti-malware field), largely because signatures are
easier to write and detect more reliably. The application vendor
typically updates malware signatures at least once a day, or more often if
the need arises, because malware changes quickly.

When a tool finds malware, it might respond by killing any
associated processes and either deleting the detected files or
quarantining them so that they’re not able to execute. Other times, it
may simply leave the files alone. Anti-malware tools sometimes detect
other security tools or files that aren’t malware, which you’ll want to
leave alone and ignore in the future.

People generally install anti-malware tools on individual systems and
servers as a matter of course or to comply with a policy. You might also
find them installed on proxy servers to filter malware out of the
incoming and outgoing traffic. This is common on proxies for email, as
malware often uses email to propagate. The tool might reject the email
entirely, strip the malware out of the message body, or remove the
offending attachment.

Executable Space Protection

Executable space protection is a technology that prevents the operating
system and applications from using certain portions of the memory to
execute code. This means that classic attacks, such as buffer overflows
(discussed in the “What Is a Buffer Overflow?” box on the next page),
which depend on being able to execute their commands in hijacked
portions of memory, may not function at all. Many operating systems
also use address space layout randomization (ASLR), a technique that shifts
the contents of the memory in use around so that tampering with it is

even more difficult.4

WHAT IS A BUFFER OVERFLOW?

A buffer overflow attack works by inputting more data than an
application is expecting—for example, by entering 10 characters
into a field that was expecting only 8, as shown in Figure 11-3.

Figure 11-3: An example of buffer overflow

Depending on the application, the extra two characters might
be written somewhere into memory, perhaps over memory
locations used by other applications or the operating system. It’s
sometimes possible to execute commands by specifically crafting
the excess data.

Executable space protection requires two components to function: a
hardware component and a software component. The two main CPU
chip manufacturers, Intel and AMD, have executable space protection
components. Intel calls it the Execute Disable (XD) bit, and AMD calls
it Enhanced Virus Protection.

Many common operating systems, including Microsoft’s, Apple’s,
and several Linux distributions, implement the executable space
protection software component.

Software Firewalls and Host Intrusion Detection

I’ve already discussed using firewalls and intrusion detection systems on
the network to detect and filter out undesirable traffic. You can also add
a layer of security at the host level by implementing a similar set of tools
there. Although network firewalls and intrusion detection systems are
usually purpose-built appliances implemented at the network, the actual
functions they perform take place via specialized software resident on
the devices. You can install similar software directly onto the hosts
residing on your networks. In addition, using firewalls and IDS both on
and off your hosts can increase your layers of security.

Properly configured software firewalls add a useful layer of security
to the hosts residing on your networks. These firewalls generally
contain only a subset of the features you might find on a large firewall
appliance, but they’re often capable of similar packet filtering and
stateful packet inspection. They can range from the relatively simple
versions that are built into common operating systems to large versions,
intended for use on corporate networks, that include centralized
monitoring and considerably more complex rules and management
options.

Host-based intrusion detection systems analyze the activities on or
directed at a host’s network interface. They have many of the same
advantages as network-based intrusion detection systems but with a
considerably reduced scope of operation. As with software firewalls,
these tools may range from simple consumer models to much more
complex commercial versions.

A potential flaw in centrally managed host intrusion detection
systems is that, for the software to report an attack to the management
mechanism in real time, the information needs to be communicated
over the network. If the host in question is under attack via the same
network, the software may not be able to do this. You can attempt to
mitigate this issue by sending a regular beacon from the device to the
management mechanism, allowing you to assume that there’s a problem
if the beacon doesn’t appear, but this might not be a complete approach,
as no news doesn’t always equal good news.

Operating System Security Tools

Many of the same tools you can use to evaluate your network security
(discussed in Chapter 10) can help you assess the security of your hosts.
For example, you can use scanners to examine how your hosts interact
with the rest of the devices on the network, or you could use
vulnerability assessment tools to help point out particular areas that
might contain applications or services that are vulnerable to attack—or
tools already in your environment that someone might use against you

to subvert your security. The tools I will discuss in this section aren’t an
exhaustive list, but I’ll hit a few of the highlights.

Scanners

You can use the scanning tools mentioned in Chapter 10 to detect
security flaws in your hosts. For example, you could look for open ports
and versions of services that are running, examine banners that services
display upon connection to give you information about things such as
the version of the software, or examine the information your systems
display over the network.

Earlier in this chapter, when I discussed operating system hardening,
you learned how to use Nmap to discover ports that had services
listening on them. Nmap has many uses, and it can give you
considerably more information—for example, specific vendor or version
information. Figure 11-4 shows the results of an Nmap scan directed
against a network printer using the following command:

nmap -sS -sU -A -v 10.0.0.121

Figure 11-4: Nmap results

In this case, I used -sS to run a TCP SYN port scan and -sU to run a
UDP port scan. I enabled OS detection, version detection, and script
scanning (-A), and I enabled verbose output as it ran (-v). If you try this
command, you’ll notice that it takes considerably longer to complete
than the one I ran earlier.

In Figure 11-4, the port listing displays several extra ports, as well as
quite a bit of information about the specific services and versions that
are running. The http-title returned tells you that this is a Brother HL-
L8350CDW series printer. Armed with this information, you might

have a much better chance of successfully attacking the device in
question.

YOU FOUND A WHAT?

When scanning with Nmap with OS detection enabled, you may
notice that it reports the device fingerprints found as running
something odd or even wrong entirely. Sometimes Nmap’s OS
fingerprints can be a little skewed, so it’s often best to verify the
output from Nmap with another tool if something looks odd.

In addition to the many features built into Nmap, you can create
custom Nmap functionality of your own using the Nmap Scripting
Engine, which is a custom language and scripting engine that enables
you to add functionality to Nmap. Nmap is a capable tool with a
dizzying array of switches, features, and capabilities. Fortunately, there
is also a great set of documentation to refer to at
https://nmap.org/book/man.html.

Vulnerability Assessment Tools

Vulnerability assessment tools, which often include many of the same
features found in a tool such as Nmap, attempt to find and report
network services on hosts that have known vulnerabilities.

One such well-known scanning tool is OpenVAS
(http://www.openvas.org/). You can use OpenVAS from the command
line, but it also has a convenient graphical interface called Greenbone,
shown in Figure 11-5. OpenVAS can conduct a port scan on a target
and then attempt to determine what services (and which versions) are
running on any ports it finds open. OpenVAS will then report back with
a specific list of possible vulnerabilities for a given device.

https://nmap.org/book/man.html
http://www.openvas.org/

Figure 11-5: The OpenVAS interface

OpenVAS includes a port scanner, which finds the listening services
so you can identify vulnerabilities in them.

Exploit Frameworks

Exploits are small bits of software that take advantage of flaws in other
software to cause them to behave in ways that their creators didn’t
intend. Attackers commonly use exploits to gain access to systems or get
additional privileges on those systems. As a security professional, you

can also use these tools and techniques to assess the security of your
own systems so that you can fix any issues before attackers find them.

An exploit framework is a collection of prepackaged exploits and tools,
such as network mapping tools and sniffers. These frameworks make
exploits simple to use, and they give you access to a large library of
them. Exploit frameworks gained popularity in the first few years of the
2000s and are still going strong. Some notable ones include Rapid7’s
Metasploit (shown in Figure 11-6), Immunity CANVAS, and Core
Impact.

Figure 11-6: The Metasploit framework

Many exploit frameworks are graphically interfaced tools that you
can run in much the same way as any other application functions. You
can even configure some tools to automatically seek out and attack

systems, spreading further into the network as they gain additional
access.

Summary

To secure your operating systems, you can start by hardening it.
Hardening involves removing all unnecessary software and services,
altering the default accounts on the system, applying the principle of
least privilege, updating software often, and conducting logging and
auditing.

You can also implement additional software to secure your operating
systems. Anti-malware tools can detect, prevent, and remove malware,
and you can put firewall technology to use directly on your hosts to
filter out undesirable traffic as it enters or exits your network interfaces.
You can also install host intrusion detection systems to detect attacks as
they come at you over the network.

Finally, you can make use of a variety of security tools to find
security flaws. Several scanning tools, like Nmap, can give you
information about your systems and the software running on them.
Vulnerability assessment tools such as OpenVAS can locate specific
security flaws in your services or network-enabled software.
Additionally, you can use exploit frameworks like Metasploit to attack
systems to gain access to them or to elevate your privilege levels. Using
some of the same techniques that attackers use can help you to find and
mitigate security issues.

Exercises

1. What does address space layout randomization do?

2. What is an exploit framework?

3. What is the difference between a port scanner and a vulnerability
assessment tool?

4. Explain the concept of an attack surface.

5. Why might you want a firewall on your host if one already exists
on the network?

6. What is operating system hardening?

7. What is the XD bit, and why do you use it?

8. What does executable space protection do for you?

9. How does the principle of least privilege apply to operating system
hardening?

10. Download Nmap from https://www.nmap.org/ and install it.
Conduct a basic scan of scanme.nmap.org using either the Zenmap
GUI or the command line (nmap <IP address> is a good place to start).
What ports can you find open?

https://www.nmap.org/
http://scanme.nmap.org/

12

MOBILE, EMBEDDED, AND INTERNET OF
THINGS SECURITY

So far, I’ve assumed that you’ll be protecting information contained on
traditional desktop or laptop computers. However, you’ll also find
vulnerable devices in your pockets, heating and air conditioning
systems, security systems, hospital rooms, cars, and a dizzying array of
other places. That’s why your security program should include mobile
devices, Internet of Things devices, and embedded devices. Internet of
Things devices, such as cameras or medical devices, are any internet-
connected devices that don’t run a full desktop operating system.
Embedded devices are computers that run inside some other device,
such as the controller in a car. These technologies are often small and
go unnoticed, but they densely litter our world.

In many cases, people overlook security concerns related to these
devices because the devices are either ubiquitous, such as smartphones,
or rarely thought about, such as medical devices. However, when
they’re compromised, the consequences can range from embarrassing to
fatal. If attackers compromise these systems, they could steal our photo

libraries, cause rolling power outages that black out half the country, or
increase the dosage on our insulin pumps to issue a fatal dose.

Each of the areas I’ll discuss in this chapter has its own specific
security issues, some of which resemble those discussed in other
chapters and some of which are entirely unique.

Mobile Security

As mobile devices become more prevalent, they also grow increasingly
vulnerable to security issues. These devices have powerful hardware
resources and capabilities, and they’re generally connected to some kind
of network at all times. They move in and out of environments with
regularity and store and transmit data without notice—and don’t
necessarily comply with the basic security measures considered normal
on standard, nonmobile computers.

Mobile devices include smartphones and tablets most likely running
iOS or Android operating systems, as well as a variety of head-mounted
devices and smartwatches. People use mobile devices to send and
receive email, surf the web, edit documents, play videos or games, and
listen to music—in short, most of the same functions as nonmobile
computers.

The line between mobile devices and computers has become
considerably blurred. On the one hand, some of our smartphones rival
the processing power and storage capacity of computers and have
similarly capable operating systems. On the other hand, some
computers, like small ultrabooks and devices such as the Raspberry Pi,
run on minimal hardware and use little power. Some even run mobile
operating systems, such as Android. Since distinguishing between these
devices becomes a question of design philosophy rather than physical
capability, we should treat them the same from a security perspective.

Protecting Mobile Devices

That said, people protect mobile devices in a few specific ways. Usually,
businesses will use both software and some sort of policy to maintain

mobile device security.

Mobile Device Management

Many devices used in organizational environments have well-established
sets of tools and features allowing you to centrally manage them. Being
centrally managed means that these devices are under the control of one
main system that maintains them. Central management lets you
automatically patch vulnerabilities and upgrade software, force users to
change their passwords at regular intervals, regulate and track installed
software, and adjust a device’s settings to a standard dictated by a
particular policy.

For mobile devices, you can generally accomplish these tasks
through an external management solution, a category referred to as
mobile device management, enterprise mobility management, or unified
endpoint management, depending on slight differences in features and
vendors’ preferences. Over time, these solutions have expanded to
include desktop and server operating systems.

The exact architecture of a management solution will vary from one
vendor to another, but most use an agent (a piece of software) on the
mobile device to enforce a certain configuration on the device. These
agents typically regulate access to a business’s resources, such as email,
calendaring, or network resources, and can discontinue a client’s access
if it becomes noncompliant, if the device is stolen, or if the user’s
employment is terminated. Additionally, many management solutions
let you remotely wipe a device, either completely or just corporate data,
or disable it entirely.

As the distinction between mobile and nonmobile devices becomes
narrower, vendors of management solutions have begun to support
some traditionally nonmobile devices, allowing you to remotely manage
both mobile and nonmobile devices using the same tools and
techniques.

Deployment Models

Most organizations have a bring-your-own-device (BYOD) policy
regulating the use of personal and corporate devices in the workplace.
The policy might allow only corporate-owned devices to interact with
enterprise resources, personal devices only, or something in between.

Allowing only corporate-owned mobile devices can make it easier for
the organization to centrally manage them. Using a mobile device
management solution, you might ban the use of personal email and file-
sharing apps, for instance, and disable a user’s ability to install non-
business-related apps. You can also force users to install updates or
security patches and change their password regularly, leading to a more
secure mobile environment. We typically call corporate-owned mobile
devices either corporate-owned business only (COBO) or corporate-owned
personally enabled (COPE), depending on whether you can use them for
personal reasons or not.

If, on the other hand, you allow personal devices only and don’t
manage them with mobile device management, you won’t have many of
these capabilities. Certain tools also provide some additional security
functionality, such as allowing you to delete data remotely without
actively monitoring them, but a savvy technical user may be able to
subvert such measures. While a small organization with minimal
resources might use this method to administer a complex mobile
infrastructure, this probably wouldn’t be optimal for a large enterprise.

Many organizations allow a mix of personal and corporate-owned
devices and sometimes restrict some of the personal devices’
capabilities. You could allow the more secure and trusted devices access
to a greater set of resources, while still letting people access basic
services, such as email, on their personal devices, providing they agree
to have these devices managed by a management tool and accept a
reasonable set of security features.

Mobile Security Issues

Mobile devices face several specific security issues. While this section is
by no means exhaustive, it outlines some of the more common areas of
risk.

The Baseband Operating System

Every modern mobile device contains an operating system underneath
the one you can see, called the baseband operating system. This tiny
operating system runs on its own processor and generally handles the
phone’s hardware, like radios, universal serial bus (USB) ports, and
global positioning system (GPS). The type of baseband operating
system varies based on the processor it runs on, and the operating
systems are generally proprietary to the manufacturer of the device.
This lack of standardization, coupled with infrequent device updates
(I’ll return to this momentarily), can cause vulnerabilities that last for
years, often for the life of the device.

Given that the baseband operating systems work outside the view of
the device’s “normal” operating system, attackers can use them to carry
out a variety of attacks. For example, in October 2018, attackers spied
on US President Trump’s cell phones via the Signaling System No. 7

(SS7) protocol1 used by the baseband operating system and cell phone
carriers for routing calls and text messages, among other things. The
SS7 protocol was developed in 1975, in an era where security was not a
design goal.

Unfortunately, short of an update from the device manufacturers,
you can’t do much to directly fix these vulnerabilities other than putting
additional controls in place to compensate for them, such as additional
encryption or application segmentation on the device.

Jailbreaking

Jailbreaking, or rooting, a mobile device means modifying it to remove
restrictions that the device manufacturer placed on it. You typically do
this to open normally inaccessible features, such as administrative
access, and to install apps the device vendor hasn’t approved.

Typically, you accomplish a jailbreak by conducting a series of
exploits to bypass the security features of the device. For the jailbreak to
persist through a reboot, you often have to disable these security
features or patch the files on the device to remove them entirely. Mobile
devices typically have many layers of security in place, and a persistent

jailbreak typically requires punching a permanent hole all the way
through to the kernel that is the core of the operating system. This, of
course, leaves the device open to malicious apps and outside attacks.

When vendors release new operating systems, they include fixes to
patch the holes that allowed the last jailbreak to take place. The
jailbreak developers then start working on a new generation of
jailbreaks as the vendor releases the next beta version of its operating
system, and the cycle continues.

To stop jailbreaking on a device, you could attach it to an external
management solution, which installs its own apps to provide additional
security layers. Some might be able to prevent jailbreaking entirely or at
least alert you about attempts to jailbreak the device. Mobile anti-
malware apps may provide a measure of protection as well.

Malicious Apps

Malicious apps can compromise the security of mobile devices. Mobile
apps often request a great number of privileges when they’re installed;
often, they can access sensitive information, log into other apps, read
email, and use the network connection.

You might think you’re safe if you use an unjailbroken device and
download apps from the standard operating system app store, but this
isn’t the case. The measures that vendors put in place to keep malicious
apps out of their stores are by no means foolproof. In January 2018,
researchers from RiskIQ analyzed thousands of apps in the Apple and
Google app stores and found hundreds of malicious cryptocurrency

apps designed to steal coins from users.2

Worse still are apps designed especially for jailbroken devices,
sourced from the shadowy back alleys of the internet. While the normal
vendor app stores have security measures in place and at least some level
of vetting for the apps in them, these back-alley apps have no such
protections. They could do nearly anything in the background, out of
site of the user interface, and you’d have no way of knowing at all.

To protect against malicious apps, you should stick to the standard
app stores and avoid jailbroken devices. Apps from Apple’s app store are

typically more secure than those from others because Apple has a higher
standard for the apps it accepts. You could also use an anti-malware app
for additional protection.

Updates (or Lack Thereof)

Lastly, updates to mobile devices and their apps can cause major
security problems—specifically when they don’t happen.

People depend on the device manufacturer to issue updates to the
primary and baseband operating systems, but these updates don’t always
occur in a timely manner, or at all. Typically, a manufacturer will update
a device consistently for two or three years and then release new
updates infrequently, or never again, because it’s more profitable to sell
you a new device than keep older ones up-to-date.

Apple devices tend to fare slightly better than most, but even Apple’s
updates become less frequent after a few years. Google, with its looser
licensing of the Android operating system, typically leaves updates up to
the device’s manufacturer, so the experience there can vary. Additionally,
the descriptions of device updates often lack specific details, so smaller
updates, such as those to fix specific security issues, may be difficult to
learn more about.

App updates can also be problematic. Aside from the apps the device
shipped with, you have no guarantee at all that an app’s creator will
update the app or fix security issues, especially when it comes to smaller
apps.

You can, to a certain extent, manage the update issue yourself. By
carefully selecting devices from vendors that have better track records
for updates over time, you can keep these devices safer for longer.
Currently, devices from Apple and those sold directly by Google receive
more frequent updates and operating system upgrades. For apps, the
same holds relatively true—apps from larger vendors have a higher
likelihood of being updated over time.

Embedded Security

An embedded device is a computer contained inside in another device
that typically performs a single function. Embedded devices include
everything from the computer controlling the car wash you drove
through the other day to the insulin pump keeping a diabetic person
healthy. Even the drivers inside some newer LED flashlights are tiny
embedded devices. These devices surround us, and you’d have to go to
great extremes to avoid them.

Where Embedded Devices Are Used

I’ve talked a little bit already about where embedded devices can be
found. Now let’s look at some of the more common use cases for them.

Industrial Control Systems

Industrial control systems and supervisory control and data acquisition
systems commonly use embedded devices. An industrial control system is
any system controlling an industrial process. A supervisory control and
data acquisition system is a kind of industrial control system that
specifically monitors and controls systems over long distances, often

those related to utilities and other infrastructure.3

These systems control our water systems, nuclear power plants, oil
pipelines, and a variety of other critical infrastructure. If an attacker
took control of or tampered with them, the effects could reach into the
physical world. Triton, discussed in the previous chapter, targeted
industrial control systems. The Stuxnet virus in 2007 is another
excellent example of the impact of attacks against these types of systems.
Believed to have been a joint project of the US and Israeli governments,
Stuxnet specifically targeted the systems controlling Iran’s facilities for

enriching uranium.4 The virus tampered with the controls of the
centrifuges used in the facility, causing the rotors in them to spin faster,
wobbling the centrifuges until they failed. At the same time, the virus
prevented the sensors detecting this activity from communicating with

the safety systems that would have prevented this unusual activity.5

While these devices ostensibly have high levels of security, much of it
is security through obscurity, a concept I’ve discussed in previous

chapters. Industrial control systems often run on proprietary real-time
operating systems (RTOSs), similar to the baseband operating systems
used in mobile devices, and have many of the same security issues, for
many of the same reasons.

Frequently, these devices operate on air-gapped networks, which have
no direct network connections to the outside. The Iranian control
systems that Stuxnet attacked operated on just this type of network, and
this didn’t save them from infection. You can bypass these controls with
an infected USB drive so long as the facility’s staff lacks security
education.

Medical Devices

Medical devices containing embedded systems can include anything
from the vital signs monitors in hospitals to the pacemakers and insulin
pumps directly attached to people. Like industrial control systems, these
devices commonly run RTOSs, with either minimal user interfaces or
specialized interface devices required to communicate with them.

Though the cardiac device implanted in your chest to keep your
heart on track may not seem like a computer with the same set of
security needs as the one on your desk, it is, in fact, more closely related
than might make you comfortable. In October 2018, the US Food and
Drug Administration (FDA) issued a warning for patients and doctors
using the Medtronic Cardiac Implantable Electrophysiology Device, a

kind of pacemaker.6 The FDA found that the programmer for the
device didn’t communicate securely with the manufacturer when
downloading updates, potentially leaving an opening for attackers to
manipulate the settings of the programmer or the device itself,
including sending it modified firmware.

Such an attack could be deadly. Unfortunately, just as with other
devices, lack of standardization across the industry and, to some extent,
the secretive and proprietary nature of these devices leads to less secure
products than the battle-hardened desktop operating systems and apps
we all use regularly. These devices don’t have anywhere near the
number of users that the more popular operating systems have, and they
aren’t as easily accessible for casual poking and prodding by attackers

and security researchers. You can think of them as the delicate hothouse
orchids of the operating system world.

Cars

Cars can have as many as 70 embedded devices communicating over a
network to run a vehicle. The network on which these devices
communicate is called a controller area network bus. First developed in the
early 1980s, the controller area network (CAN) bus has seen several
revisions since, as vehicles have grown more complex and computerized.

For example, a car’s airbag system makes use of the CAN bus, as
crash sensors all over the car watch for impacts and communicate these
events across the network to the airbag control system. The airbag
control system might also ask the car’s occupant detection system which
seats in the car are occupied and whether the occupant is of a safe size
before deploying the airbags.

Car hacking began to heat up in the security industry a few years
ago, thanks to the research of Charlie Miller and Chris Valasek, among
others. Miller and Valasek succeeded in remotely controlling a hacked
Jeep Cherokee. They caused it to accelerate, disabled the brakes, and
even took control of the steering wheel, terrifying the reporter from
Wired who was behind the wheel at the time, despite the reporter

knowing what was going on.7

Clearly, the consequences of such attacks can be dire. Cars surround
us every time we leave the house, and it takes only a single issue like this
to put many people in danger.

For a much more in-depth discussion of the CAN bus and associated
devices, their security, and how to hack them, I recommend The Car
Hacker’s Handbook by Craig Smith, which goes into a lot of technical
depth I don’t have the space to cover here.

Embedded Device Security Issues

Embedded devices face a few specific security issues, which I’ll discuss
further in this section.

Upgrading Embedded Devices

The process of upgrading embedded devices can pose an interesting set
of challenges. In many cases, you can’t upgrade embedded devices at all,
or if you can, it’s often difficult to do so. Since these devices aren’t
typically networked, you generally can’t update them automatically.

You can update some devices, such as the pacemakers discussed
earlier, with a specialized external device designed to communicate with
them, but this can have its challenges also. You probably can’t
completely reset an embedded device or take it in for service if you have
an issue, like you can with smartphones or desktop computers. In the
case of a pacemaker, you likely wouldn’t even want to frequently update
the software controlling it, as the impact of a bad update could be
heartbreaking (literally).

As for the hardware, engineers typically expect any embedded
hardware to last the lifetime of the device it’s part of. (There are a few
exceptions to this, such as the devices in industrial control systems,
which typically have the support necessary to be replaced.) Short of a
safety recall or a warranty repair of the larger device containing it,
you’re unlikely to find many options for upgrading. To protect against
this vulnerability, you should be sure to keep the hardware that depends
on the embedded systems up-to-date, at least to the point that the
manufacturer can still repair it, although it may be costly to do so.

Physical Impacts

Not only do embedded devices often lack the necessary protections, but
a compromised embedded device can have huge impacts. Earlier, I
discussed the cases of the hacked Jeep and the uranium centrifuges in
Iran. Those could be the tip of the iceberg. Many devices might impact
human safety, even though some industries, such as those related to
vehicles, medical devices, and industrial control systems, have begun to
harden their embedded systems against deliberate attacks. Because of
the prevalence of such systems, there are many potential targets.

Adding to the device-specific and industry-specific issues,
governments could use security issues involving embedded devices in

nation-state attacks. Stuxnet was the first public example of this. As
embedded devices control our power, heat, water, sanitation, food
production, and countless other systems, they become likely targets
when disagreements between nations escalate.

Recently, both vendors and governments have started to pay more
attention to these devices. Many companies, such as SANS
(https://ics.sans.org/), now offer security training for industrial control
systems that used to be very specialized.

Unfortunately, you can’t do much to protect the physical world from
the impacts of embedded devices, short of updates or fixes from the
manufacturer. In some cases, you can try to fit a compensating control
of some type to a specific situation, such as adding intervening layers of
security, such as a firewall, to protect the device.

Internet of Things Security

Internet of Things (IoT) devices are prevalent, and they’re becoming
more so—gradually creeping into our toasters, refrigerators, and other
appliances so that we can reach them from the internet. With this, of
course, comes a host of security issues.

What Is an IoT Device?

In 1999, Kevin Ashton coined the term Internet of Things while working

with the Auto-ID Center.8 The term referred what he saw as the
increasing need to provide network connectivity to track and connect a
wide variety of parts and devices. Today, we use the term to refer to any
device with an internet connection that doesn’t run a full desktop
operating system.

The term is broad, and since the world of IoT is still a bit of a
frontier, many of the concepts and ideas related to it are open to
interpretation. Let’s talk briefly about a few of the more common IoT
devices.

https://ics.sans.org/

Printers

Although common, network printers often go unnoticed in offices and
homes. We often treat them as something along the lines of a toaster,
when in reality, they’re complex devices with operating systems like any
other computer, capable of communicating on one or more networks,
and with plenty of starting places for an attacker to attempt to gain a
foothold. Printers generally use an RTOS on a small embedded device,
which drives the printer hardware. Hewlett-Packard LaserJet printers

run LynxOS operating systems.9 These devices listen on a variety of
ports and run common services, such as FTP, Telnet, SSH, and
HTTP/HTTPS, along with several services peculiar to printing
devices. Additionally, they’ll typically have both wired and wireless
network adapters. Printers also commonly come equipped with a
reasonable amount of memory and storage to support the large print
jobs sent to them.

While attacks on these devices are not terribly common, they do
occasionally succumb to vulnerabilities. One of the more recent ones,
the KRACK vulnerability, can allow attackers to eavesdrop on traffic
sent wirelessly to one of these devices and to access sensitive

documents.10

Surveillance Cameras

Networked surveillance cameras, another common type of device, are
frequently full of vulnerabilities. Some vendors develop and maintain
their camera models well, but others don’t. You can put together a
networked camera simply by running a few services on a lightweight
platform (often Linux) at a low price. Certain manufacturers create
these devices with little testing, developing their product by modifying
the source code of other projects.

These devices often have simple default administrative credentials,
backdoors enabling unauthorized use of the device, or hordes of security
vulnerabilities and misconfigurations. Malware can easily take advantage
of them to conduct attacks against other devices or to serve as an entry
into deeper parts of the environment.

https://calibre-pdf-anchor.a/#a776

Physical Security Devices

Physical security devices include tools such as smart locks, which
connect to a network (often Bluetooth or Bluetooth Low-Energy) and
allow you to open and close a lock through a mobile app or other
software.

Smart locks save you the inconvenience of having to carry around a
key or remember a combination. In some cases, simply bringing your
mobile device within range of the lock will open the lock; you don’t
have to take any direct action at all. As you might expect, this doesn’t
always help the security of the device.

In July 2018, the company Pen Test Partners undertook research on
the Tapplock (https://tapplock.com/) smart padlock, which you open
through a mobile app. The company discovered that the unlock code
sent to the device was static and replayable, meaning that, even without
the associated app, you could just tell the device to unlock directly via
Bluetooth and it would do so. They also learned that the unlock code
relied on the MAC address broadcast by the device and could be easily

calculated by an attacker.11 To add insult to injury, another researcher
discovered vulnerabilities in the API behind the Tapplock that allowed
attackers to attach any lock to their account, retrieve the physical
location where the app last unlocked the lock, and unlock the lock via

the app.12

If you try to make every device into an IoT device, you’ll likely face
vulnerabilities such as these. Although you gain convenience from the
smart lock, putting a device like a lock behind an open API literally
accessible to anyone with a computer on the internet causes serious
vulnerabilities. Even when you put a great deal of effort into strong
security, there will always be vulnerabilities present and someone will
always be there to exploit them.

THE DIFFERENCE BETWEEN EMBEDDED AND IOT DEVICES

The line between an embedded device and an Internet of Things
device is a bit of a fuzzy one, and people often disagree about the

https://tapplock.com/
https://calibre-pdf-anchor.a/#a777
https://calibre-pdf-anchor.a/#a778

definitions of each. There are, however, a few relatively high-level
differences.

Embedded devices generally aren’t designed for regular
interactions with a person. Both devices are often wrapped up
inside another device, which may have a user interface of some
kind, but the embedded one usually hides behind the scenes, and it
tends to have simpler interfaces that allow you to turn it on or off
or make adjustments to its settings.

Also, embedded devices aren’t typically connected to the
internet, although some embedded devices, such as the embedded
devices found in cars, are connected to internal networks. Some
people might argue that providing an embedded device with an
internet connection would move it into the IoT device category.

IoT Security Issues

IoT devices, of course, face several specific security issues stemming
from their network connections.

Lack of Transparency

Often, you won’t know exactly what your IoT devices are doing.
Although they have limited user interfaces, they typically contain
similar sets of features as your mobile device and desktop computer.
When your IoT device is idling on the network, it could be
communicating with anyone. You won’t always be able to tell if it’s
doing something unusual or unexpected.

Unless you put specific instrumentation in place to discover what
these devices are doing, you don’t really have any way of answering
those questions. An advanced user might be able to log into a command
line interface on the device and interrogate it slightly further, but you
might not be able to glean much additional information aside from
tidbits of data from the file system and logs.

One way of discovering what exactly an IoT device is doing is to
connect the device to a virtual private network to isolate the device
(making its traffic easier to distinguish) and force it to communicate
through a monitorable choke point and then use a tool such as
mitmproxy (https://mitmproxy.org/) to eavesdrop on it and see who
exactly the device is trying to talk to and what data is being sent or
received. You can find this tool and accompanying scripts in the Data-
Life project on GitHub (https://github.com/abcnews/data-life/). If the
device is sufficiently chatty on the network, you’ll have to sift through
many results to identify the devices on the other end of the connection.
You can expect to see most IoT devices communicating with a variety of
other devices under normal operation. They might, for example, ask for
updates from the vendor, talk to APIs, and check the time against time
servers.

Everything Is an IoT Device

All sorts of appliances now ship with “smart” capabilities and network
connectivity of some variety. Even lightbulbs and exercise machines talk
to the internet. As I’ve discussed, devices have their own specific
security failings, but they also face issues that arise from just having such
a large mass of devices on the internet.

In October 2016, an enormous distributed denial-of-service (DDoS)
attack left massive swaths of the internet unusable, including services
from large providers such as Amazon Web Services, Twitter, Netflix,
and CNN. These outages stemmed from DDoS attacks against Dyn,
the company controlling many of the root DNS servers forming the
infrastructure of the internet. The attack against these servers had a rate
of 1.2 terabytes per second, at the time the largest DDoS attack ever
witnessed, and came from more than 100,000 devices, almost all of

which were IoT devices.13

The attack was possible because malware called Mirai recruited
vulnerable IoT devices into a botnet (a network of compromised
systems) and made them accessible for the controllers of the botnet to
use for DDoS attacks. The malware didn’t perform a complex attack; it

https://mitmproxy.org/
https://github.com/abcnews/data-life/
https://calibre-pdf-anchor.a/#a779

simply looked for devices on the network and attempted to access them
using their default administrative password.

Of course, users could have prevented this problem by changing the
administrative password when they first configured the device, but
unfortunately, users rarely do so. When wireless access points first
became common, they faced similar issues. Manufacturers will likely
resolve this vulnerability the same way they resolved the vulnerabilities
in the wireless access points: by shipping devices in a secure state by
default.

Outdated Devices

In addition to the large number of vulnerable devices on the market, the
many old devices on the market cause security problems. IoT devices of
some variety have existed for about 20 years now. Even if no insecure
devices left any factory starting today, these old devices could remain in
operation for at least the next decade.

It’s not easy to add security measures to older devices. You could
update the firmware to patch holes in certain devices, but this would
require performing updates, which most devices don’t automatically
download. The many nontechnical people with IoT devices in their
homes are unlikely to understand both why these devices need to be
updated and how to do so.

Summary

In this chapter, I discussed mobile devices, embedded devices, and IoT
devices. Each of these categories faces a particular set of potential
security issues, which you can mitigate to varying extents.

When it comes to mobile devices, the baseboard operating system,
jailbreaking, and malicious apps can threaten your security. However,
you can take certain steps to manage mobile devices and, to a certain
extent, control how people use them, particularly in corporate
environments. Embedded devices, which are present in many critical
systems, have the potential to cause physical impacts well beyond the

device itself, while IoT devices, or devices with a network connection,
are particularly difficult to monitor and secure.

From a security perspective, these devices are just as important as
traditional computers, even if they’re rarely considered.

Exercises

1. What is the difference between an embedded device and a mobile
device?

2. What does the baseband operating system in a mobile device do?

3. How can embedded devices impact the physical world?

4. What did the Mirai botnet do?

5. What is the difference between a supervisory control and data
acquisition system and an industrial control system?

6. What are the dangers of jailbreaking a mobile device?

7. What problems might you see when updating embedded devices?

8. What is the difference between an embedded device and an IoT
device?

9. What common types of network connectivity might you see in an
IoT device?

10. What solutions might you use to prevent a mobile device from
being jailbroken?

13

APPLICATION SECURITY

In Chapters 10 and 11, I discussed the importance of keeping your
networks and operating systems secure. Part of keeping attackers from
interacting with your networks and subverting your operating system
security is ensuring the security of your applications.

In December 2013, the Target Corporation, a retailer operating
more than 1,800 stores throughout the United States, reported a breach
of customer data that included 40 million customer names, card
numbers, card expiration dates, and card security codes.1 A month later,
Target announced that an additional 70 million customers had had their
personal data breached.2

This breach didn’t originate in Target’s systems at all, but rather
those of a vendor, Fazio Mechanical, that was connected to Target’s
network. Experts believe the attack to have occurred as follows:3

1. Attackers compromised the systems of Fazio Mechanical with a
trojan (a type of malware), using a phishing attack to get it in place.

2. Because of poor network segmentation practices, the attackers were
able to use Fazio’s access to Target’s network to gain access to other

portions of the Target network.

3. Attackers installed the credit card harvesting BlackPOS malware on
the Target point-of-sale (POS) systems (cash registers, basically)
and used the malware to collect information from payment cards
scanned by the POS.

4. Attackers moved the collected credit card numbers to
compromised File Transfer Protocol (FTP) servers on the Target
network and then sent them outside of the company, where they
eventually ended up on a server in Russia.

5. Attackers then sold the stolen credit card and personal data on the
black market.

A variety of issues at several levels allowed this attack to take place.
Any one of these missing or lapsed controls—the lack of network
segmentation, the lack of anti-malware tools, and the lack of data loss
prevention tools—could have prevented the attack from succeeding. In
this chapter, you’ll look at application vulnerabilities introduced during
software development, vulnerabilities commonly found in web
applications, and vulnerabilities that affect the databases that
applications use. I’ll also discuss tools you can use to protect your
applications.

Software Development Vulnerabilities

Many common software development vulnerabilities can lead to
security issues in your applications. These include buffer overflows, race
conditions, input validation attacks, authentication attacks,
authorization attacks, and cryptographic attacks, as shown in Figure 13-
1. I’ll go over each kind of vulnerability in this section.

You can avoid all these vulnerabilities with relative ease when
developing new software by simply not using the programming
techniques that enable them to exist. The Computer Emergency
Response Team at Carnegie Mellon University publishes a set of
documentation that defines secure software development standards for

several programming languages, and it’s a good overall resource for
further investigation into secure coding in general.4

Figure 13-1: Software development vulnerabilities

Buffer Overflows

Buffer overflows, or buffer overruns, occur when you don’t properly
account for the size of the data input into your applications. If an

application accepts data, most programming languages will require you
to specify the amount of data you expect to receive and then set aside
storage for that data. If you don’t set a limit on the amount of data you
take in (a process called bounds checking), you may receive 1,000
characters of input when you had allocated storage for only 50
characters.

In this case, the excess 950 characters of data may overwrite other
areas in memory that are used by other applications or the operating
system. Attackers might exploit this technique to tamper with other
applications or cause the operating system to execute their own
commands.

Proper bounds checking can nullify this type of attack entirely. Some
languages, such as Java and C#, implement bounds checking
automatically.

Race Conditions

Race conditions occur when multiple processes (or multiple threads
within a process) control or share access to a resource and the correct
handling of that resource depends on the proper ordering or timing of
transactions.

For example, if you’re making a $20 withdrawal from your bank
account via an automatic teller machine (ATM), the process might go as
follows:

1. Check the account balance ($100).

2. Withdraw funds ($20).

3. Update the account balance ($80).

If someone else starts the same process at roughly the same time and
tries to make a $30 withdrawal, you might end up with a bit of a
problem.

User 1 User 2

User 1 User 2

Check the account balance ($100). Check the account balance ($100).

Withdraw funds ($20). Withdraw funds ($30).

Update the account balance ($80). Update the account balance ($70).

Because two users share access to the resource, the account ends up
recording a balance of $70 where you should see only $50. The two
users “race” to access the resource, and undesirable conditions occur.
(Note that most actual banks implement measures to keep this from
happening.)

Race conditions can be difficult to detect in existing software, as
they’re hard to reproduce. When you’re developing new applications,
you can generally avoid these issues if you carefully handle the way users
access resources to avoid dependencies on timing.

Input Validation Attacks

If you’re not careful to validate the input to your applications—in other
words, make sure any input that users submit, such as the answers to
forms, arrives in an acceptable format—you might fall victim to
problems such as a format string attack.

In format string attacks, attackers use certain print functions within a
programming language that are meant to format the output but instead
allow the attacker to manipulate or view an application’s internal
memory. In some languages, such as C and C++, you can insert certain
characters into the input, such as %f, %n, and %p, to apply formatting to
the data you’re printing to the screen. Attackers could, for example,
include the %n (write an integer into memory) parameter in a specially
crafted input to write a value into a location in memory that they might
not normally be able to access. They could use this technique to crash
an application or cause the operating system to run a command,
potentially compromising the system.

To solve this attack, you should validate your input by filtering it for
unexpected or undesirable content. In the case of the format string

attack, you may be able to remove the offending characters from the
input, or you could put error handling in place to ensure that you
anticipate and compensate for such issues so that they don’t cause a
problem.

Authentication Attacks

Authentication attacks are those that attempt to gain access to resources
without the proper credentials to do so. Putting strong authentication
mechanisms in place in your applications will help resist these kinds of
attacks.

If you require users of applications to create strong passwords, you’ll
help keep attackers out. If you use an eight-character, all-lowercase
password, such as hellobob, a reasonably powerful machine may be able
to break the password almost instantaneously. If you use a ten-character,
mixed-case password that also includes numbers and a symbol, such as
H3lloBob!1, the time needed to crack it increases to more than 20 years.5

Furthermore, your applications should not use passwords that are built-
in and impossible to change (often called hard-coded passwords).

Additionally, you should avoid performing authentication on the
client side (the end user’s machine), because you’d then place such
measures where they may easily be attacked. As with most security
measures, when you give attackers direct access to your controls to
manipulate them as they please, you largely remove the effectiveness of
the control.

If you depend on a local application or script to perform
authentication steps and then simply send the “all clear” message to the
server end, nothing prevents an attacker from repeating this message to
your back end directly, without completing the authentication.
Authentication efforts should always be placed as far out of reach of
attackers as you can make them, and entirely on the server side, if
possible.

Authorization Attacks

Authorization attacks are attacks that attempt to gain access to resources
without the appropriate authorization to do so. Like authentication
mechanisms, placing authorization mechanisms on the client side is a
bad idea. Any process performed in a space where it might be subject to
direct attack or manipulation by users is almost guaranteed to be a
security issue at some point. You should instead authenticate against a
remote server or on the hardware of the device if the device is portable,
which gives you considerably more control.

When you’re authorizing a user for some activity, you should do so
using the principle of least privilege, as discussed in Chapter 3. If you’re
not careful to allow the minimum permissions required, both for your
users and for your software, you may leave yourself open for attack and
compromise.

Additionally, whenever a user or process attempts an activity that
requires privileges, you should always check again to ensure that the
user is indeed authorized for the activity in question, each time it’s
attempted. If you have a user who, whether by accident or by design,
gains access to restricted portions of your application, you should have
measures in place that stop the user from proceeding.

Cryptographic Attacks

Cryptography is easy to implement badly, and doing so can give you a
false sense of security. One of the big mistakes when implementing
cryptography in your applications is to develop your own cryptographic
scheme. The major cryptographic algorithms in use today, such as
Advanced Encryption Standard (AES) and Rivest-Shamir-Adleman
(RSA), have been developed and tested by thousands of people who are
very skilled and make their living developing such tools. Additionally,
these algorithms are in general use because they have been able to stand
the test of time without serious compromise. Although it’s possible that
your homegrown algorithm may have some security benefit, you
probably shouldn’t test it on software that stores or processes sensitive
data.

In addition to using known algorithms, you should plan for the
possibility that the mechanisms you select will become obsolete or
compromised in the future. This means you should design the software
in such a way to support the use of different algorithms or at least
design your applications in such a way that changing them is not a
Herculean task. You should also make it possible to change the
encryption keys the software uses, in case your keys break or become
exposed.

Web Security

Attackers can use an enormous variety of techniques to target web
applications and compromise your machines, steal sensitive information,
and trick you into carrying out activities without your knowledge. You
can separate these attacks into two main categories: client-side attacks
and server-side attacks.

Client-Side Attacks

Client-side attacks either take advantage of weaknesses in the software
loaded on the user’s clients or rely on social engineering to fool the user.
There are many such attacks, but I’ll focus specifically on some that use
the web as an attack vehicle.

Cross-site scripting (XSS) is an attack carried out by placing code
written in a scripting language into a web page, or other media like
Adobe Flash animation and some types of video files, that is displayed
by a client browser. When other people view the web page or media,
they execute the code automatically, and the attack is carried out.

For example, the attacker might leave a comment containing the
attack script in the comments section of an entry on a blog. People
visiting the web page with their browsers would execute the attack.

Cross-site request forgery and clickjacking, two attacks mentioned in
Chapter 3, are also client-side attacks. In a cross-site request forgery
attack, the attacker places a link, or links, on a web page in such a way
that they’ll execute automatically. The link initiates an activity on

another web page or application where the user is currently
authenticated, such as adding items to their shopping cart on Amazon
or transferring money from one bank account to another.

If you’re browsing several pages and are still authenticated to the
page the attack is intended for, you might execute the attack in the
background and never know it. For example, if you have several pages
open in your browser, including one for MySpiffyBank.com, a common
banking institution, and you’re still logged in to that page when you
visit BadGuyAttackSite.com, the links on the attack page may
automatically execute to get you to transfer money to another account.
Although attackers most likely won’t know which websites a user is
authenticated to, they can make educated guesses, such as banks or
shopping sites, and include components to target those specifically.

Clickjacking is an attack that takes advantage of your browser’s
graphical display capabilities to trick you into clicking something you
might not click otherwise. Clickjacking attacks work by placing another
layer of graphics or text over the page, or portions of the page, to
obscure what you’re clicking. For example, the attacker might hide a
Buy Now button under another layer with a More Information button.

These types of attacks are, for the most part, thwarted by the newer
versions of common browsers, such as Internet Explorer, Firefox, Safari,
and Chrome. The most common attacks discussed in this section will be
blocked by these automatically, but in many cases, new attack vectors
simply allow for new variations of old attacks. Additionally, many clients
are running on outdated or unpatched software that remain vulnerable
to attacks that are years old. Understanding how the common attacks
work and protecting against them not only gives you an additional
measure of security but also helps you understand how attackers
develop newer attacks.

It’s important to keep up with the most recent browser versions and
updates, as the vendors that produce them regularly update their
protections. Furthermore, some browsers let you apply additional tools
to protect you from client-side attacks. One of the better known of
these tools is NoScript (http://noscript.net/) for Firefox. NoScript blocks
most web page scripts by default and requires you to specifically enable

http://noscript.net/

those you’d like to run. When used carefully, script-blocking tools such
as these can disable many of the web-based threats you’re likely to
encounter.

Server-Side Attacks

Several vulnerabilities on the server side of web transactions may cause
problems, as well. These threats and vulnerabilities can vary widely
depending on your operating system, web server software and its
versions, scripting languages, and many other factors. However, these
vulnerabilities are typically caused by a few common factors.

Lack of Input Validation

As discussed earlier in the chapter, software developers often neglect to
properly validate user input, and some of the most common server-side
web attacks use this weakness to carry out their attacks.

Directory traversal attacks present a strong example of what might
happen if you don’t validate input to your web applications. Attackers
can use these attacks to gain access to the file system outside of the web
server’s structure where content is stored by using the ../ character
sequence, which moves up one level of a directory to change directories.
For example, browsing to
https://www.vulnerablewebserver.com/../../../etc/passwd on a vulnerable
server would display the contents of the /etc/password file. To break this
down further, this URL asks the web server to move in the file system in
this fashion:

1. From /var/www/html (where web content is normally stored)

2. To /var/www

3. Then to /var

4. Then to / (the root directory)

5. Then back down to /etc

6. Then to display the contents of /etc/passwd

If you’re careful to validate the input you accept into your web
applications and filter out characters that might be used to compromise
your security, you can often fend off such an attack before it even
begins. In many cases, filtering out special characters, such as the ones
described and *, %, ‘, ;, and / will defeat such attacks entirely.

Improper or Inadequate Permissions

Assigning improper user permissions can often cause problems with
web applications and internet-facing applications of most any kind. Web
applications and pages often use sensitive files and directories that will
cause security issues if they’re exposed to general users.

For example, one area that might cause trouble is the exposure of
configuration files. Many web applications that make use of databases
(which is a clear majority of applications) have configuration files that
hold the credentials the application uses to access the database. If these
files and the directories that hold them aren’t properly secured,
attackers may simply read your credentials from the file and access the
database as they please. For applications that hold sensitive data, this
could be disastrous.

Likewise, if you don’t take care to secure the directories on your web
servers, you may find files changed in your applications, new files added,
or the contents of some files deleted entirely. Insecure applications that
are internet-facing don’t tend to last long before being compromised.

Extraneous Files

When a web server moves from development into production,
developers often forget to clean up any files not directly related to
running the site or application, or files that might be artifacts of the
development or build process.

If you leave archives of the source code from which your applications
are built, backup copies of your files, text files containing your notes or
credentials, or any such related files, you may be handing attackers
exactly the materials they need to compromise your system. One of the
final steps when rolling out a web server should be to make sure all such

files are cleaned up or moved elsewhere if they’re still needed. This is
also a good periodic check to ensure that, during troubleshooting or
upgrading, these items haven’t been left behind where they’re visible to
the public.

Database Security

Many websites and applications in use today rely on databases to store
the information they display and process. In some cases, the database
applications may hold very sensitive data, such as tax returns, medical
information, or legal records, or they may contain only the contents of a
knitting discussion forum. In either case, the data is important to the
owners of the application, and they’d be inconvenienced if it were
damaged or manipulated in an unauthorized manner.

Several issues can harm the security of your databases. The canonical
list includes the following:6

Unauthenticated flaws in network protocols

Authenticated flaws in network protocols

Flaws in authentication protocols

Unauthenticated access to functionality

Arbitrary code execution in intrinsic SQL elements

Arbitrary code execution in securable SQL elements

Privilege escalation via SQL injection

Local privilege escalation issues

Although this may seem like a horribly complex set of issues to worry
about, you can break them down into four major categories, as shown in
Figure 13-2. I’ll cover each of these categories in detail in this section.

Figure 13-2: Categories of database vulnerabilities

Protocol Issues

Vulnerabilities might exist in the protocols used by any given database.
This includes the network protocols used to communicate with the
database. The vulnerabilities in these protocols often involve common
software development issues, such as the buffer overflows discussed
earlier in this chapter.

To mitigate known protocol issues, you should use the most current
software version and patches for the database software in question, as
discussed in Chapter 11. To protect your databases from unknown issues
(issues that haven’t been discovered yet), you should limit access to your
databases, either by limiting who is able to connect to the database over
the network, by using some of the methods discussed in Chapter 10, or
by limiting the privileges and accounts you make available for the
database itself, following the principle of least privilege.

You may also discover issues in the protocols used to authenticate to
your database, depending on the specific software and version in use. In
general, the older and more out-of-date your software becomes, the

more likely it is that you’re using an authentication protocol that isn’t
robust. Many older applications will use authentication protocols known
to have been broken at some point or to have obvious architectural
flaws, such as sending login credentials over the network in plaintext,
which Telnet (a tool remotely accessing to a device) does. Again, the
best defense here is to ensure that you’re using the most current
versions of all software.

Unauthenticated Access

When you give a user or process the opportunity to interact with your
database without supplying a set of credentials, you create the possibility
for security issues. For example, some simple queries to the database
through a web interface might accidentally expose information
contained in the database; or you might expose information about the
database itself, such as a version number, giving an attacker additional
material with which to compromise your application. You might also
experience a wide variety of issues related to the secure software
development practices discussed at the beginning of the chapter.

If, instead, the user or process is forced to send a set of credentials to
begin a transaction, the transaction can be monitored and appropriately
restricted, based on those credentials. If you allow access to part of your
application or toolset without requiring credentials, you may lose
visibility and control over the actions taking place.

Arbitrary Code Execution

Arbitrary code execution (also known as remote code execution when
conducted over the network) is the ability for attackers to execute any
commands on a system that they choose, without restriction. When it
comes to database security, attackers are able to do this because of
security flaws related to the languages you use to talk to databases.
Structured Query Language (SQL) is the language used to
communicate with many of the common databases currently on the
market. It contains several built-in elements that can create these

security risks, some of which you can limit the use of and some of which
you can’t.

These language elements can help facilitate bugs in the software
you’re using, or they can create issues if you use insecure coding
practices, such as allowing attackers to execute arbitrary code within the
application. For example, if the server was not appropriately and
securely configured, anyone could read from and write to the file system
of the server (with the load_file and outfile functions), a common ability
in many database systems. Once you’re able to interface with the
operating system itself, you have a foothold to conduct further attacks,
steal data, and so on.

Your best defenses against such attacks are twofold. From the
consumer side, you should use the current versions and patch levels of
all software. From the vendor side, you should mandate secure coding
practices, in all cases, to eliminate the vulnerabilities in the first place, as
well as conduct internal reviews to ensure that such practices are being
followed.

Privilege Escalation

The last kind of major database security issue is privilege escalation.
Privilege escalation attacks are those that increase your level of access
above what you’re authorized to have on the system or application.
Privilege escalation is aimed at gaining administrative access to the
software to carry out other attacks that need a high level of access.

You can often conduct privilege escalation through SQL injection, an
attack in which input containing SQL commands is submitted to the
application. For example, one of the more common SQL injection
examples is to send the string ' or '1'='1 as the input in a username field
for an application. If the application has not filtered the input properly,
this string may cause it to automatically record that you’ve entered a
legitimate username, because you have set up a condition that always
evaluates to true, 1 = 1. This allows you to potentially escalate your level
of privilege.

Privilege escalation in your databases can also occur if you fail to
properly secure your operating system. Database applications run on
the operating system, using the credentials and privileges of an
operating system user, just like a web browser or any other. If you’re not
careful to protect your operating systems and the user accounts that run
on them, as discussed in Chapters 10 and 11, any database security
measures you put in place might have no effect. If attackers gain access
to the account under which the database software is running, they’ll
likely have privileges to do anything they care to do, including deleting
the database itself, changing passwords for any of the database users,
changing the settings for the way the database functions, manipulating
data, and so on.

Your best defenses against operating system issues such as these are
the set of hardening and mitigation steps discussed in Chapter 11. If you
can keep attackers from compromising your system in the first place,
you can largely avoid this concern.

Application Security Tools

You can use tools to assess and improve the security of your
applications. I discussed some of them, such as sniffers, in Chapters 10
and 11. Others are less familiar and more complex, such as fuzzers and
reverse engineering tools. Some also require a certain amount of
software development experience and familiarity with the technologies
concerned to use effectively.

Sniffers

You can use sniffers to watch the specific network traffic that is being
exchanged with an application or protocol. In Figure 13-3, I’m using
Wireshark to examine Hypertext Transfer Protocol (HTTP) traffic
specifically.

Figure 13-3: HTTP traffic in Wireshark

In some cases, you can also use tools specific to certain operating
systems to get additional information from sniffing tools. A good
example of this is Linux’s network monitoring tool EtherApe, which
enables you to not only sniff the network traffic but also easily associate
the traffic you see with network destinations or specific protocols, as
shown in Figure 13-4.

Figure 13-4: EtherApe

Often, graphical representations such as these allow you to parse
data more intuitively and easily discern patterns of traffic that might
otherwise go unnoticed.

Web Application Analysis Tools

A great number of tools exist for analyzing web pages or web-based
applications, some of them commercial and some of them free. Most of
these tools search for common flaws, such as XSS or SQL injection
vulnerabilities, as well as improperly set permissions, extraneous files,
outdated software versions, and many other security issues.

OWASP Zed Attack Proxy

OWASP Zed Attack Proxy (ZAP), shown in Figure 13-5, is a free and
open source web server analysis tool that performs checks for many of
the common vulnerabilities mentioned in this chapter.

Figure 13-5: ZAP

ZAP indexes all the files and directories it can see on the target web
server, a process commonly referred to as spidering, and then locates and
reports on any potential issues it finds.

TRUST BUT VERIFY

It’s important to note, when using web analysis tools, that not
everything the tool reports as a potential issue will be an actual
security problem. These tools almost universally return a certain
number of false positives, indicating a problem that doesn’t
actually exist. It is important to manually verify that the issue
really exists before acting to mitigate it.

Burp Suite

You can also choose from quite a few commercial web analysis tools,
which vary in price from several hundred dollars to many thousands of
dollars. One such tool, Burp Suite (https://portswigger.net/burp/), tends
toward the lower end of the cost scale for the professional version ($399
per year at the time of this writing) but still presents a solid set of
features. Burp Suite runs in a GUI interface, as shown in Figure 13-6,
and, in addition to the standard set of features found in any web
assessment product, it includes several more advanced tools for
conducting more in-depth attacks.

Figure 13-6: Burp Suite

Burp Suite is also available in a free community version that allows
you to use the standard scanning and assessment tools but doesn’t
include access to the more advanced features.

Fuzzers

https://portswigger.net/burp/

In addition to all the tools you can use to look over your software for
various known vulnerabilities, there are tools that can help you find
completely unexpected problems through a process referred to as fuzz
testing. The tools used for this technique, called fuzzers, work by
bombarding your applications with all manner of data and inputs from a
wide variety of sources, in the hope that you can cause the application to
fail or to perform some unexpected behavior.

The concept of fuzzing was first developed by Barton Miller for a
graduate-level university operating system class in the late 1980s,7 and
it’s become popular among security researchers and those conducting
security assessments on applications. Miller’s fuzzing web page at the
University of Wisconsin is a great resource for further reading on
fuzzing, and it includes the document that spawned this field of analysis.
You can find it at http://pages.cs.wisc.edu/~bart/fuzz/.

A wide variety of fuzzing tools are available; some have a specific
focus, such as web applications or hardware devices, and some are more
general. OWASP’s fuzzing page
(https://www.owasp.org/index.php/Fuzzing) lists many current fuzzing
tools and materials.

Summary

Several common vulnerabilities, introduced during the software
development process, can affect the security of your applications. You
might encounter buffer overflows, race conditions, input validation
attacks, authentication attacks, authorization attacks, and cryptographic
attacks, just to name a few. Although such issues are common, you can
resolve most of them with relative ease by following secure coding
guidelines, either those internal to your organization or from external
sources such as the National Institute of Standards and Technologies
(NIST) or the United States Computer Emergency Readiness Team
(US-CERT).

In terms of web security, you should look for client-side issues and
server-side issues. Client-side issues involve attacks against the client

http://pages.cs.wisc.edu/~bart/fuzz/
https://www.owasp.org/index.php/Fuzzing

software you’re running or the people using the software. You can help
mitigate these by ensuring that you’re using the most current version of
the software and any associated patches and sometimes by adding extra
security tools or plug-ins. Server-side attacks are attacks directed against
the web server itself. These attacks often take advantage of a lack of
strict permissions, a lack of input validation, and the presence of leftover
files from development or troubleshooting efforts. Fixing such issues
requires scrutiny by both developers and security personnel.

Database security is a large concern for almost any internet-facing
application. You should look out for protocol issues, unauthenticated
access, arbitrary code execution, and privilege escalation. You can
mitigate many of these problems by following secure coding practices,
keeping up-to-date on your software versions and patches, and
following the principle of least privilege.

Application security tools can help your applications resist attack. As
with network and host security, you can put sniffers to use to examine
the network data that enters and exits your applications. You can also
use tools to examine how existing applications operate and determine
what weaknesses they might have that a skilled attacker could exploit. In
addition, fuzzing tools and web application analysis tools can locate
vulnerabilities, whether known or unknown.

Exercises

1. What does a fuzzing tool do?

2. Give an example of a race condition.

3. Why is it important to remove extraneous files from a web server?

4. What does the tool Burp Suite do and in what situation might you
use it?

5. Name the two main categories of web security.

6. Is a SQL injection attack an attack on the database or an attack on
the web application?

7. Why is input validation important?

8. Explain a cross-site request forgery attack and what you might do
to prevent it.

9. How might you use a sniffer to increase the security of your
applications?

10. How can you prevent buffer overflows in your applications?

14

ASSESSING SECURITY

Once you’ve put your security measures in place, you need to make sure
they’re actually protecting your assets. As discussed in Chapter 6,
complying with laws and regulations doesn’t actually mean you’re
secure. Since that’s the case, how can you assess the true level of your
security? You have two primary vehicles for doing so: vulnerability
assessment and penetration testing. In this chapter, I’ll discuss these two
methods.

Vulnerability Assessment

A vulnerability assessment is a process that uses a specially designed tool
to scan for vulnerabilities. Two common vulnerability assessment tools
are Qualys and Nessus. To create these tools, vendors must do a great
deal of legwork to catalog vulnerabilities, determine which platforms
and applications the vulnerabilities apply to, and classify them by
severity. The vendors will also often provide additional information
along with them about the potential impact of the vulnerabilities, how
to fix them, and so on.

Because of the work that goes into keeping them up-to-date, some of
these tools can be rather expensive. Since vulnerabilities are in a
constant state of flux, vendors need to constantly keep up with changes
to the vulnerabilities, patches being issued for them, new variants that
appear, and a dizzying array of other factors in flux. Without these
constant updates, these tools will quickly fall out of usefulness and be
unable to detect new vulnerabilities or provide accurate information.

Ultimately, the results of a vulnerability assessment will give you
only one bit of information about whether you’re secure—namely, it
will tell you whether there are specific known vulnerabilities existing on
each of your hosts.

Conducting a vulnerability assessment takes several steps, outlined in
this section.

Mapping and Discovery

To be able to scan for vulnerabilities, you need to know what devices
you have in your environments. Typically, you conduct scans against
groups or ranges of hosts, which change over time. If you don’t have
some method of keeping your lists of hosts up-to-date, you’ll get
incomplete scan results, or you may scan the wrong hosts entirely. This
can be a particular issue with hosts in the cloud, which I’ll come back to
later in this chapter.

Mapping Environments

Start your vulnerability scanning efforts by creating a map of your
environment that shows you what devices are present in your network.
Most vulnerability scanning tools let you directly create such a map;
otherwise, you can import host information from tools built specifically
for this purpose, such as Nmap (https://nmap.org/).

Often, tools create these maps by interrogating every single IP
address in the network range you’re building a map for. For large
network ranges, this can take a long time—perhaps more time than it
will take for a host to appear and disappear again. For example, a class A
internal network, commonly recognizable by having IP addresses in the

https://nmap.org/

10.0.0.0 to 10.255.255.255 range, can hold more than 16 million IP
addresses. Another common internal network scheme, a class B network,
which commonly uses IPs that look like 192.168.0.0, can hold more
than 65,000 hosts. It’s not uncommon for an environment to use a class
A and several class B networks for segmentation purposes. Since most
tools take a second or two per IP to interrogate each address while
discovering hosts, you’ll be at it for a quite a while.

Performing these discovery scans can also be stressful to your
network infrastructure if you’re not careful to do so slowly. While
mapping a network, it’s entirely possible to overload network devices,
such as routers and switches, to the point they become nonresponsive.

Discovering New Hosts

In addition to mapping to figure out what’s there in the first place, you
also need to keep your lists of hosts up-to-date. If you know the
locations of any new devices on your networks, you can look in those
specific places, but you may miss some hosts if they’re not where you
expect them to be—particularly if they’ve been placed somewhere odd
in order to hide them.

You can actively or passively discover new hosts. Active discovery
involves a process similar to the one used to map the network in the first
place: you go IP by IP and interrogate each to see whether anything
responds. This has many of the same limitations mapping does, but you
could restrict these updates to portions of the network you know to
contain devices, in the interest of being able to get through a network
range more quickly and at shorter intervals.

You can also use passive scanning techniques to discover devices on
the network. This often involves placing a device at network choke
points, such as routers or switches, to eavesdrop on the traffic flowing
through your infrastructure. In this way, you’ll automatically discover
devices as they talk on the network and can automatically add them to
your lists of hosts to scan.

Scanning

Once you know what hosts you have, you can scan them for
vulnerabilities. There are a few different types of scans you can conduct,
as well as different methods you can use for each.

Unauthenticated Scans

A basic vulnerability scan of a host is typically an external and
unauthenticated scan. These types of scans don’t require any credentials
for the host you’re scanning or any access other than network
connectivity to the host in question. This allows you to conduct the
scan against almost any device. Depending on the settings of the scan, it
will often show you what ports are open on the host in question, reveal
the banner information for the services listening on those ports, and
guess at the applications and operating systems in use, based on the
other information gathered.

Authenticated Scans

You can also perform authenticated scans against hosts. An authenticated
scan is one that is conducted using a valid set of credentials, generally
administrative, for the system being scanned. Having credentials to log
into a host will often let you collect internal information, such as what
software is installed, the contents of configuration files, the permissions
on files and directories, the vulnerability patches that the system needs
but doesn’t currently have, and other information. This gives you a
considerably more thorough view of the device and its potential
vulnerabilities than you can see from the outside, generating a
considerably more accurate picture of the security of the device.

However, authenticated scans require you to keep your
authentication credentials current, both on the vulnerability scanning
tool end and on the hosts themselves. Some of the checks will also
require administrative access to the device, and some system owners
may be reluctant to give you credentials with this broad level of access.

Agented Scans

Agented scans can provide a means to get around some of the downsides
of authenticated scans. An agent is a small piece of software installed on
each host. The software runs as though it were a user on the system, so
it’s authenticated, but it doesn’t require you to maintain a separate set of
credentials on the device or in the vulnerability scanning tool.

Another benefit of using agents is that hosts configured with them
typically report to the management devices on their own, thus removing
some of the need to search for the devices individually on your
networks. While it doesn’t remove the need entirely, because some
devices, such as network appliances, may not be able to run an agent, it
should ease your burden quite a bit, as most or all the devices you
expect to be present should identify themselves automatically.

Application Scanning

Some tools allow you to scan specific applications. For example, many
well-developed scanners exist solely for scanning web applications.
These types of scans are specific to web technologies and vulnerabilities
and can search considerably more deeply in the application for issues
than a scanner intended strictly for hosts would be able to find. You will
often find web application scanners to be one of the more deeply
developed application vulnerability scanners, and indeed there are many
scanners that exist for this purpose alone. One common such scanner is
Burp Suite (https://portswigger.net/burp/), mentioned in Chapter 13,
which is a highly capable tool for both automated and manual testing of
web applications.

Technological Challenges for Vulnerability
Assessment

You’ll likely run across a great number of technological challenges that
will make it harder for you to instantiate and maintain vulnerability
scanners. A few of the most common and frequent stumbling blocks are
related to cloud and virtualization technologies.

The Cloud

https://portswigger.net/burp/

Resources in the cloud put a bit of a twist in the tasks, processes, and
technologies discussed here. As mentioned in Chapter 6, cloud
providers may have some specific rules in place for what you can and
can’t do in their environments, and this can change from one cloud
provider to the next.

When it comes to vulnerability scanning, some vendors may not
want you to scan devices in their environments at all, particularly if
they’re using certain cloud deployment models. In most infrastructure
as a service (IaaS) models, you’ll likely be able to scan within certain
boundaries and according to certain rules. In platform as a service
(PaaS) environments, vendors may restrict you to scanning with agents,
as the infrastructure itself probably won’t be visible to you. In software
as a service (SaaS) environments, the provider probably won’t want you
to scan at all.

Another consideration for cloud scanning is the fluctuating nature of
the environment. Even in the case of an IaaS platform, the devices and
IPs may change frequently behind the scenes, and you may accidentally
find yourself scanning devices or networks no longer belonging to you.
The traffic generated by external vulnerability scanning from an
unknown entity is virtually indistinguishable from attack traffic, so you
shouldn’t accidentally point these tools at another company’s resources
without appropriate permission.

Containers

Another common and potentially problematic feature of cloud and
virtualized environments is the container. A container is an entirely self-
contained and ready-to-run virtualized instance, specifically designed to
allow easy scaling up and down of portions of the environment seeing
variable levels of load. For instance, your web server farm may see little
load in the middle of the night and scale down to a few containers, as
that’s all they need to keep things running at that hour. In the middle of
the day, the server farm may scale up to hundreds of instances and then
scale up and down over the course of the day according to load.

As containers may exist one second and be gone the next, they don’t
work well with vulnerabilities scans on a schedule of any kind.

Containers often require specialized vulnerability scanning tools to
assess them for vulnerabilities.

Penetration Testing

Some people assume that vulnerability scanning is the same thing as
penetration testing. While a penetration tester might use the results
from a vulnerability scan, these are two different sets of activities, each
with their own processes.

Penetration testing, also referred to as pentesting or ethical hacking, is
the process of testing a system for vulnerabilities that an attacker could
exploit. Penetration testing is a much more in-depth process than
vulnerability scanning, and it’s often done manually. While a
vulnerability assessment may get you part of the way to assessing your
security, it won’t get you all the way there.

The goal of penetration testing is to find the holes in your security
so you can fix them before attackers discover them. Penetration testers
use the same tools and techniques as genuinely hostile hackers (called
black hat hackers) do. But unlike black hat hackers, penetration testers
have permission to conduct these activities, which means that a
penetration test conducted against your own systems would, in every
sense, be considered an act of cybercrime if directed against the assets of
another company without their authorization.

You’ll often see a penetration testing team referred to as a red team, a
term of military origin. The red team plays the part of the attacker
when evaluating the security of your systems as realistically as they can
while keeping the test safe and reasonable.

The Penetration Testing Process

Penetration testing follows a relatively standard process: scoping,
reconnaissance, discovery, exploitation, and reporting, as shown in
Figure 14-1.

Figure 14-1: The penetration testing process

Although some descriptions of the penetration testing process might
use slightly different terminology or contain more or fewer steps, the
general concepts will almost always be the same.

Scoping

Before you can conduct a penetration test against anything, you need to
know what it is you’re testing against. The scope of your penetration
test may be very open, such as “all assets of MyCompany,” or it may list
only individual IP addresses you can test against.

Also, the organization might restrict your testing to test or quality
assurance (QA) environments only to prevent impacts on production
systems. While penetration testers generally won’t use intentionally
damaging attacks, their tools and techniques could always have
unforeseen side effects.

An organization might also provide rules of engagement as part of
their scoping discussion. These rules may specify times of day in which
testing must take place, procedures testers should follow if they uncover
a severe vulnerability, and so on. These rules will vary greatly depending
on the environment being tested and the specific organization.

Reconnaissance

Reconnaissance, or recon, is the research you conduct before attempting
any attacks against a target. This can involve searching the internet for
information about the target environment or company, looking through
job listings for mentions of specific technologies, researching some
technology you know the company to be using, and so on. Recon is
often, but not always, a passive activity and falls just short of directing
tools against the target environment.

Discovery

The discovery phase of the penetration test begins the active testing
stage. Here, you’d likely run your vulnerability assessment tools, if you
didn’t already do so, and go over the results. In this step, you’d look for
open ports and services on hosts to detect any running services that
could be vulnerable to attack. Based on what you find here, you might
conduct additional research and recon based on specific information
you collected.

Exploitation

This phase involves attempting to exploit the vulnerabilities you
detected in the earlier stages. This may include attacking vulnerabilities
in the environment or even chaining multiple vulnerabilities together to
penetrate deeper into the environment. Again, what you find here may
prompt additional research and recon as you gain new information
about the target or new targets become available.

Reporting

The last phase of penetration testing is reporting. Here, you carefully
document what you discovered and what exact steps you need to
reproduce the attacks you successfully carried out.

This step illustrates one of the key differences between vulnerability
assessment and penetration testing. While vulnerability assessment may
produce a potential list of vulnerabilities in the environment, the tools
can’t guarantee that an attacker will actually be able to exploit them. In
penetration testing, the tester will report only the issues that resulted in
an actionable attack against the system or have a high chance of being
exploited.

Classifying Penetration Tests

You can classify penetration tests in several different ways. When
testing, you can approach the test with differing levels of knowledge
about the environment, from different starting places, or with different
teams conducting specific portions of the test.

Black Box, White Box, and Gray Box

You’ll often see penetration tests referred to as some color or level of
opacity. This refers to the level of information the tester is provided
with regarding the environment being tested.

In black-box testing, the tester has no knowledge of the environment
other than the testing scope. This closely simulates a real-world attack,
as presumably an outside attacker would start from this same place.

White-box testing gives the tester all the information about the
environment available. This likely includes a list of all hosts, what
software is in use, source code for applications and websites, and so on.
While this isn’t a realistic attack because an attacker likely wouldn’t have
access to all this information, it allows the tester to be considerably
more thorough and potentially turn up issues that would have otherwise
gone undiscovered.

Gray-box testing is a hybrid of the two testing types already
mentioned. Here, the attacker is given some inside information about
the environment, but not as much as they’d get if they were conducting
a white-box test. This is one of the more common types of penetration
test.

Internal vs. External

Penetration tests might also be called internal or external, which can
have two different interpretations. Internal and external might refer to
the kinds of access the tester is granted to the environment being tested.
For example, if you give the testers access to the environment from the
internet-facing portions of it only, you might call this an external
pentest. Conversely, if the testers are on the same network as the
environment, either physically or via a virtual private network (VPN)
connection, you might call this an internal test. In this case, internal
testing would probably provide a greater level of access to the
environment because the testers would begin their tests inside some
layers of security.

Internal and external might also indicate what kind of person or team
is conducting the penetration test. External testing might refer to a

third-party testing company hired to perform the pentest, while internal
testing would likely refer to a penetration testing team working for your
organization.

Targets of Penetration Tests

Penetration tests sometimes target specific technologies or
environments, such as web applications, networks, or hardware. I’ll
discuss these in depth in this section.

Network Penetration Testing

Although the term network penetration testing might sound like it would
apply to tests of specific network devices, such as routers or switches, it’s
often used as an overarching penetration testing term for the broad
testing of hosts for vulnerabilities, issues specific to web applications,
and even employees who might be vulnerable to social engineering
attacks.

Network penetration tests tend to have broad scopes but often take
place in limited time frames (also called being time boxed) and therefore
tend to be a bit shallower than a specifically focused test because the
testers might not have the time to dig into everything in the testing
scope. This is one of the more common types of testing.

Application Penetration Testing

Application penetration testing, the other common type of testing, focuses
directly on an application or application environment. Application
testing generally involves a more specialized set of tools and skills on
the part of the tester than those necessary for network penetration
testing and is more focused. It can involve two differing approaches:
static analysis and dynamic analysis.

Static analysis involves directly analyzing the application source code
and resources. For instance, the tester might pore through the code,
looking for issues such as logic errors or vulnerabilities that exist due to
the specific lines of code and libraries in use. To perform static analysis,

the tester must have a strong development background and grasp of the
languages used.

Dynamic analysis involves testing the application while it’s in
operation—in other words, testing the compiled binary form or the
running web application. While this doesn’t give the tester the same
insight into the code that static analysis does, it more closely resembles
real attacks against the application.

Web application testing is common because of how often
organizations use web applications and how often attackers are likely to
target them. Mobile and desktop applications are also frequent targets
for specific application testing, more often through static analysis
techniques. These applications can make particularly easy targets for
attackers, because large portions of applications and their resources sit
on devices that the tester can control.

Physical Penetration Testing

Physical penetration testing involves directly testing physical security
measures by, for example, picking locks or bypassing alarm systems.
Like application testing, this kind of testing also requires a particular set
of tools and skills to test well. It’s also one of the less common kinds of
test, because many organizations are more concerned with hackers
penetrating their systems than they are with someone picking the lock
on their office doors.

Testers often conduct physical penetration testing in conjunction
with other penetration testing or to aid other testing. For example, if an
attacker can get into a facility and enter a locked network closet, they
may be able to plug a device into the network and leave it behind, which
then allows them to perform attacks from the network itself without
needing to be present.

As with any other type of penetration testing, you’ll generally carry
out physical penetration testing within a particular scope and with a
specific goal in mind, whether you aim to get access to a data center or
office or to plug your hostile device into the network.

Social Engineering Testing

Social engineering penetration testing uses the same techniques
discussed in Chapter 8 and also often takes place in conjunction with
other tests. Social engineering tests are so effective that the testers
almost always succeed, and so many organizations refuse to allow them.
To keep them from succeeding, the workplace generally needs careful
preparation and good education (or they need to be paranoid).

Social engineering tests frequently involve phishing attacks, which
are easy to set up and deliver to large numbers of employees.
Impersonating employees and attempting to gain unauthorized access to
facilities or resources are also common strategies. External audit teams
often simply walk in the door of a secured area right behind someone
without using a badge (remember that this is called tailgating). Once
they’ve done this, they can bring a rogue piece of equipment into a
building and leave it behind, as mentioned in the previous section.
Many people won’t ask questions about the “IT guy” who is plugging in
and setting up a computer at an empty desk.

Hardware Testing

Hardware testing is a slightly more unusual kind of penetration test. It
typically occurs in organizations that manufacture hardware devices,
such as network gear, TVs, or IoT devices, which often make for fertile
ground for penetration testers since many of their interfaces are
inaccessible to common users and not terribly secure. In addition to
testing the device, penetration testers often test the firmware on the
device, associated mobile applications, and application program
interfaces (APIs) the devices use to communicate with their associated
servers.

You’ll likely discover specific information about the hardware in the
reconnaissance and discovery phases. This step might involve taking the
device apart and looking at the markings on the components and chips
inside. It’s also often possible to find manufacturer specifications, which
will sometimes let you access the hardware in ways the device
manufacturer didn’t intend.

Hardware devices are typically equipped with Universal
Asynchronous Receiver/Transmitter (UART) or Joint Test Action
Group (JTAG) debug ports, which are accessible on the circuit boards
after you open the device. These will often provide terminal access to
the device, in many cases without any sort of authentication, and you
can use them to manipulate the device.

The discovery phase for hardware devices can be slightly more
involved as well. Testers may investigate the firmware of the device
itself, perhaps after dumping a copy of it from flash storage chips
internal to the device, or they may test a module or application
controlling the device or even an associated web application. The
software portions of these devices can be quite complex to investigate,
as they consist of the entire operating systems and all the applications
running the device. Some devices, such as smartphones, may even have
multiple layers of operating systems and software.

Bug Bounty Programs

In the last few years, many organizations have taken to using bug
bounty programs as a kind of penetration testing. These follow
essentially the same rules and process as a regular penetration test, with
a slight twist.

In a bug bounty program, an organization offers rewards to people
who discover vulnerabilities in their resources. The “bounties” typically
vary based on the severity of the issues uncovered. They can range from
an expression of thanks or a T-shirt to hundreds of thousands of dollars.
As an example, in January 2018, Google paid a Chinese security
researcher US $112,000 for a bug found in its Pixel smartphones.1

The organizations with bounty programs allow anyone to test within
the scope they’ve set, and they pay the tester who finds a specific issue
first according to the specified bounty. Allowing anyone in the world to
hack your systems at any time might sound like a terrible idea, but these
programs have enjoyed a high level of success. The risk is partly
mitigated by the fact that the organizations are typically careful to spell
out specific scopes for their programs, and they’ll pay bounties only for

issues reported within the scope specified. As a result, there typically
isn’t much of an incentive to conduct attacks outside of this—say, just
for “joyriding.”

Plenty of platforms manage bug bounty programs on behalf of other
companies. Some of the better-known bug bounty platforms are
HackerOne (https://www.hackerone.com/), Bugcrowd
(https://www.bugcrowd.com/), and Synack (https://www.synack.com/). These
platforms also make it easy for those wanting to participate in the
programs to see what bounties are out there and what the scope and
rewards are for each company.

Technological Challenges for Penetration Testing

Like for vulnerability analysis, technical challenges exist for penetration
tests, which face many of the same issues.

The Cloud

The cloud also presents issues for penetration testing. One of the larger
issues is that cloud providers generally don’t like testers attacking their
cloud infrastructure at will. Cloud providers run a tight ship from a
resource perspective and don’t tend to like surprise activities that use
large amounts of their resources. Cloud providers will often require you
to formally request permission to penetration test and conduct the test
within a specific schedule, from known IP addresses, if they allow
testing at all. Testers willy-nilly conducting attacks against cloud
services will likely find their traffic blocked or, worse, the authorities
involved.

Finding Skilled Testers

It’s also often difficult to find skilled penetration testers. The difference
between a highly skilled and experienced tester and a novice is huge in
terms of the results you can expect. An unskilled tester may not get
much further than reviewing the results the vulnerability scanning tool
spit out, which will likely contain unverified false positives and miss
major issues.

https://www.hackerone.com/
https://www.bugcrowd.com/
https://www.synack.com/

Getting a report from a penetration testing team with few results is
often less a ringing endorsement for your amazingly tight security than
a reflection of the skill level of the team doing the testing. Penetration
testing skills take time and experience to develop, but penetration tests
are in high demand. As a consequence, you may encounter tests
conducted by testers who have no business doing so unsupervised.

Does This Really Mean You’re Secure?

After you’ve assessed your vulnerabilities, conducted your penetration
tests, and fixed all of your resulting issues and findings, are you really
secure? Will the evil black hat hackers scrabble at the slick icy walls of
your impenetrable security and then slink off, tails betwixt their legs?
Well, probably not. There are a few caveats to everything I’ve discussed,
and there’s no such thing as being perfectly secure.

Realistic Testing

To get accurate results about your security, you need to perform realistic
testing. That means you should conduct vulnerability assessments and
penetration tests without impeding them or skewing the results. This is
a taller order than it sounds like.

Rules of Engagement

When you set your rules of engagement for testing, they need to closely
adhere to the conditions under which an outside attack would take
place. The whole point of this exercise is to emulate what attackers do
so you can do it first and fix what you find. If you set rules of
engagement to artificially increase the level of your security, you’re not
doing yourself any favors. For instance, if you set a rule of engagement
specifying no chaining of attacks (performing multiple attacks one after
the other to penetrate more deeply), you’ve stopped short of exactly
what an attacker would do to gain entry to the deeper portions of the
environment.

Scope

For similar reasons, it’s important to set a realistic scope. Yes, you must
make sure that your tests don’t impact production environments or
degrade levels of service for customers, but organizations often use
factors such as these as excuses to set an artificially narrow scope. If
you’re testing in a retail environment, for instance, and set the systems
holding payment card data out of scope, you’ve just scoped out the exact
thing attackers are trying to access.

In cases when you’re making scoping decisions to protect production
assets, you may be better off setting up a specific environment mirroring
your production environment to test with impunity.

Testing Environment

If you’re using a test environment for scanning or testing purposes, you
should make sure it matches the production environment as close as
possible. It is all too common for organizations to set up idealized,
thoroughly patched, and well-secured environments for a penetration
test, without taking any of the same measures in the actual production
environment. Setting up a Potemkin village of an environment like this
works counter to what you’re trying to accomplish by performing these
kinds of assessments and tests in the first place.

In these situations, it’s often helpful to operate in a cloud
environment. In many cases, you can exactly replicate an entire
environment consisting of cloud-based hosts and infrastructure in its
own segmented area, allowing you to test an environment that’s
identical to the production environment and then tear it down once you
no longer need it.

Can You Detect Your Own Attacks?

Another way you can evaluate your level of security is to carefully watch
your everyday security tools and alerting systems while running
vulnerability tools and penetration tests. If you’re correctly assessing
your security, these activities should be almost indistinguishable from
actual attacks. If you don’t notice your testing taking place, you

probably won’t see the actual attacks coming in either. In many cases,
penetration testers won’t be as stealthy as attackers, so they should be
even easier to catch.

The Blue Team and the Purple Team

Earlier in the chapter, we referred to penetration testers as the red team.
The opposite of the red team is the blue team, tasked with defending the
organization and catching the red team. The blue team should
participate in the other side of the penetration test just as much as the
red team is attacking. While you may not want to actively block attacks
coming from the red team (interfering with testing is a bit of a religious
discussion, as it can potentially taint the test results), you should
definitely record and document the evidence of their activities. You
should have evidence of every attack the red team gets through, or at
least understand how it avoided your attention, so you can fix your
security. The results of a penetration test make an excellent basis for
requesting an additional budget for resources or tooling to cover these
gaps.

You may also hear people talk about purple teams, which form the
bridge between red teams and blue teams and help to ensure that both
operate as efficiently as possible. In environments with small security
teams, purple teams may also play the part of both the red team and the
blue team at the same time.

Instrumentation

To catch penetration testers in the act, you must have appropriate
instrumentation in place. If you don’t have intrusion detection systems
and firewalls you can use to watch for unusual traffic, anti-malware and
file integrity monitoring (FIM) tools on systems, and so on, you’ll have
no source of data to watch for these kinds of attacks. The exact mix of
tools that are reasonable to have in place will vary with your
environment and security budget, but you can do a lot with a little if
you need to do so.

At the least, you should run some of the many open source tools that
function on minimal hardware and are possible to put in place with an
extremely low expenditure. For example, the Security Onion
distribution can get data from host intrusion detection, network
intrusion detection, full-time packet capture, logs, session data, and
transaction data—all on a shoestring budget.2

FIM TOOLS

FIM tools are used to monitor the integrity of the application and
operating system files on a particular machine. Typically, you’d use
FIMs to monitor only sensitive files, such as those that define
configurations for the operating system or applications or hold
particularly sensitive data. Once the file changes, an alert might
notify someone of the changes, or in some cases, the file may
automatically be reverted to its original state. FIM tools need to be
carefully tuned, as they can produce a great deal of alerting “noise”
if improperly configured.

Alerting

Also, of critical importance is proper alerting from your tools. You need
to have good alerting so that you know when you’ve caught the testers.
You don’t want your tools muttering to themselves in the corner,
completely ignored by the blue team. With proper alerting, you can
respond to an attack or penetration test in close to real time.

You also need to be careful about the alerts you send. If you send too
many alerts, particularly if they’re false alarms, your blue team will start
to ignore the alerts entirely. The common phrase for this, borrowed
from the healthcare industry, is alert fatigue.3 The answer to this is to
carefully send actionable alerts (those that prompt a specific response)
and to send as few alerts as possible.

Secure Today Doesn’t Mean Secure Tomorrow

It’s important to understand vulnerability assessments and penetration
tests are a snapshot from a single point in time. Secure once doesn’t
mean secure always. You must iterate these processes regularly to
maintain the usefulness of the information they produce.

Your Changing Attack Surface

An attack surface is the sum of all the points that an attacker can use to
interact with your environment. It is your web servers, mail servers,
hosted cloud systems, salespeople with laptops in hotel rooms, internal
source code posted to public GitHub repositories, and hundreds of
other similar issues. As your attack surface is composed of so many
moving parts, it’s in a constant state of flux. Your vulnerability
assessment from a month ago or your penetration test from last year is
probably no longer completely accurate—hence the need to update
these at some regular interval.

Attackers Change, Too

Attackers are constantly evolving their attacks and tools, also. There are
far more attackers than there are defenders, and many of the attackers
have a direct monetary incentive to update their tools and techniques.
Furthermore, attack tools are often sold to other hackers at a handsome
profit. An entire cybercrime industry rides on keeping their tools
current, at least as much as, if not more, than the security tool industry
depends on defenders.

Putting in a security layer and expecting it to be just as solid and
effective as the day it was installed years later is a bad bet. To cope with
attackers changing, you need to change also. This cat-and-mouse game
has driven the security industry for years and will continue to do so.

Technology Updates Under You

To make matters worse, your technology can change under you (and
you may not even be aware of it). Many of the operating systems,
mobile applications, cloud services, security tools, and code libraries you
make use of regularly receive updates by those who create and maintain

them. The operating system in your smart TV may have updated in the
middle of last night, exposing you to attacks from the internet. It may
be updated again tomorrow to fix the issue, and you probably won’t
know it then either.

You may find some of the security issues generated by updates during
testing, or you may never know they existed at all. The best you can do
in order to fend off this type of issue is to put multiple layers of security
controls in place.

Fixing Security Holes Is Expensive

Finally, fixing holes in your security is expensive. It’s expensive in terms
of resources, the cost of purchasing and updating your security controls,
and the development efforts needed to fix insecure code in your
applications and websites. More often than you’d like to think, an
organization will fail to prioritize security over business priorities. You
might go to a great deal of effort to catalog vulnerabilities and write up
penetration testing findings only to be told the critical issue you found
won’t be taken care of until some other work gets done. This happens
often in the security world, and you’ll likely find a way to put another
control in place or fill the gap with a security tool. Things won’t always
be perfect, but you must still do what you can to make your
organization secure.

Summary

In this chapter, I discussed vulnerability assessments and the tools you
can use to suss out security issues in your hosts and applications. I also
talked about how vulnerability assessments differ from penetration tests
and why you should conduct both.

I covered penetration testing, the process of conducting one, and
several of the specialized subareas of penetration testing, such as web
application and hardware testing. I also talked about the challenges
inherent in conducting penetration testing against cloud and virtualized
environments.

Finally, I talked about whether you’re really secure after going
through all of the effort of vulnerability assessment and penetration
testing and what it means to catch yourself testing (or not).
Vulnerability assessment and penetration testing are representations of a
point in time, meaning you must keep iterating over these to keep your
data current.

Exercises

1. What methods can you use to detect new hosts in your
environments?

2. What benefits does an agent provide when vulnerability scanning?

3. What challenges are there in vulnerability scanning for containers?

4. How is penetration testing different from vulnerability assessment?

5. How is a red team different from a blue team?

6. Why is scoping important for a penetration test?

7. What are the differences between static and dynamic analysis?

8. How is a bug bounty program different than a penetration test?

9. What impact does the environment on which you test have on your
test results?

10. What is alert fatigue?

NOTES

A large portion of the articles and references in this list are freely
available online through the links noted.

Chapter 1

1. Federal Information Security Modernization Act of 2002, 44 U.S.C.
§3542.

2. Spafford, Eugene. “Quotable Spaf.” Updated June 7, 2018.
https://spaf.cerias.purdue.edu/quotes.html.

3. Parker, Donn B. Fighting Computer Crime. Hoboken, NJ: Wiley,
1998.

4. Munroe, Randall. “Password Strength.” xkcd: A Webcomic of Romance,
Sarcasm, Math, and Language, accessed July 2, 2019.
https://xkcd.com/936/.

Chapter 2

1. Cisco, Talos Intelligence Group. “Email & Spam Data.” Accessed
July 2, 2019.
https://www.talosintelligence.com/reputation_center/email_rep.

2. Pascual, Al, Kyle Marchini, and Sarah Miller. “2018 Identity Fraud:
Fraud Enters a New Era of Complexity.” Javelin Strategy, February
6, 2018. https://www.javelinstrategy.com/coverage-area/2018-identity-
fraud-fraud-enters-new-era-complexity/.

3. Linux Screenshots. “Google Authenticator on Android.” Flickr. July
5, 2014. https://www.flickr.com/photos/xmodulo/14390009579/.

4. Jain, Anil, Arun Ross, and Karthik Nandakumar. “Introduction.” In
Introduction to Biometrics, 1–49. New York: Springer, 2011.

5. Wolf, Flynn, Ravi Kuber, and Adam J. Aviv. “How Do We Talk
Ourselves into These Things? Challenges with Adoption of

https://spaf.cerias.purdue.edu/quotes.html
https://xkcd.com/936/
https://www.talosintelligence.com/reputation_center/email_rep
https://www.javelinstrategy.com/coverage-area/2018-identity-fraud-fraud-enters-new-era-complexity/
https://www.flickr.com/photos/xmodulo/14390009579/

Biometric Authentication for Expert and Non-Expert Users.” Paper
presented at the Association for Computing Machinery CHI
Conference on Human Factors in Computing Systems, Montreal,
Québec, April 21–26, 2018.

6. Eberz, Simon, and Kasper B. Rasmussen. “Evaluating Behavioral
Biometrics for Continuous Authentication: Challenges and Metrics.”
In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. New York: ACM, 2017.

7. Greenberg, Andy. “OPM Now Admits 5.6M Feds’ Fingerprints
Were Stolen by Hackers,” Wired, September 23, 2015.
https://www.wired.com/2015/09/opm-now-admits-5-6m-feds-
fingerprints-stolen-hackers/.

8. Kharitonov. “File:EToken NG-OTP.jpg.” Wikimedia. August 11,
2009. https://commons.wikimedia.org/wiki/File:EToken_NG-OTP.jpg.

Chapter 3

1. Hardy, Norm. “The Confused Deputy: (Or Why Capabilities Might
Have Been Invented).” ACM SIGOPS Operating Systems Review 22,
no. 4 (October 1988): 36–38.

2. von Ahn, Luis, Manuel Blum, and John Langford, “Telling Humans
and Computers Apart Automatically.” Communications of the ACM 47,
no. 2 (February 2004): 56–60.

3. LaPadula, Leonard J., and D. Elliott Bell. Secure Computer Systems:
Mathematical Foundations (MITRE Technical Report 2547, Vol. 1).
Bedford, MA: MITRE Corporation, March 1, 1973.

4. Biba, K.J. Integrity Considerations for Secure Computer Systems (MITRE
Technical Report 3153). Bedford, MA: MITRE Corporation, 1975.

5. Lin, T.Y. “Chinese Wall Security Policy—An Aggressive Model.” In
Proceedings of the Fifth Annual Computer Security Applications
Conference. Piscataway, NJ: IEEE, 1989.

Chapter 4

https://www.wired.com/2015/09/opm-now-admits-5-6m-feds-fingerprints-stolen-hackers/
https://commons.wikimedia.org/wiki/File:EToken_NG-OTP.jpg

1. US Government Accountability Office. “DATA PROTECTION:
Actions Taken by Equifax and Federal Agencies in Response to the
2017 Breach.” August 30, 2018. https://www.gao.gov/products/GAO-18-
559.

2. Kolodner, Jonathan S., Rahul Mukhi, Martha E. Vega-Gonzalez, and
Richard Cipolla. “All 50 States Now Have Data Breach Notification
Laws.” Cleary Gottlieb, April 13, 2018.
https://www.clearycyberwatch.com/2018/04/50-states-now-data-breach-
notification-laws/.

3. Dictionary.com. s.v. “Audit.” Accessed July 2, 2019.
http://dictionary.reference.com/browse/audit/.

4. Scott & Scott, LLP. “BSA Audit Fine Calculator.” Accessed July 2,
2019. http://bsadefense.com/fine-calculator/. (Registration is required to
use the calculator.)

5. Business Software Alliance. “BSA End User Reward Program: Terms
and Conditions.” Accessed July 2, 2019.
https://reporting.bsa.org/r/report/usa/rewardsconditions.aspx/

6. Qualys home page. Accessed July 2, 2019. https://www.qualys.com/.

Chapter 5

1. US National Security Agency. “18th Century Cipher.” Central
Security Service, Digital Media Center, Cryptologic Machines Image
Gallery. Accessed July 2, 2019.
https://www.nsa.gov/Resources/Everyone/Digital-Media-Center/Image-
Galleries/Cryptologic-Museum/Machines/igphoto/2002138769/.

2. US National Security Agency. “Enigma.” Central Security Service,
Digital Media Center, Cryptologic Machines Image Gallery.
Accessed July 19, 2019.
https://www.nsa.gov/Resources/Everyone/Digital-Media-Center/Image-
Galleries/Cryptologic-Museum/Machines/igphoto/2002138774/.

3. Crypto Museum. “Enigma-E: Build Your Own Enigma.” Last
modified October 15, 2017.
https://www.cryptomuseum.com/kits/enigma/index.htm

https://www.gao.gov/products/GAO-18-559
https://www.clearycyberwatch.com/2018/04/50-states-now-data-breach-notification-laws/
http://dictionary.com/
http://dictionary.reference.com/browse/audit/
http://bsadefense.com/fine-calculator/
https://reporting.bsa.org/r/report/usa/rewardsconditions.aspx/
https://www.qualys.com/
https://www.nsa.gov/Resources/Everyone/Digital-Media-Center/Image-Galleries/Cryptologic-Museum/Machines/igphoto/2002138769/
https://www.nsa.gov/Resources/Everyone/Digital-Media-Center/Image-Galleries/Cryptologic-Museum/Machines/igphoto/2002138774/
https://www.cryptomuseum.com/kits/enigma/index.htm

4. Flash Enigma simulator. Accessed July 2, 2019.
https://www.enigmaco.de/.

5. Petitcolas, Fabien. “Kerckhoffs’ Principles from « La cryptographie
militaire ».” The Information Hiding Homepage. Accessed July 2, 2019.
http://petitcolas.net/kerckhoffs/index.html.

6. Jacobs, Jay. “Updating Shannon’s Maxim.” Behavioral Security (blog),
May 28, 2010. https://beechplane.wordpress.com/2010/05/28/updating-
shannons-maxim/.

7. Diffie, Whitfield, and Martin E. Hellman. “New Directions in
Cryptography.” IEEE Transactions on Information Theory IT-22, no. 6
(1976): 644–54. https://ee.stanford.edu/~hellman/publications/24.pdf.

8. Warburton, Dan. “Terror Threat as Heathrow Airport Security Files
Found Dumped in the Street.” The Mirror, October 29, 2017.
https://www.mirror.co.uk/news/uk-news/terror-threat-heathrow-airport-
security-11428132.

9. VeraCrypt homepage. Accessed July 2, 2019. https://www.veracrypt.fr/.

10. “Bitlocker.” Microsoft Docs, January 25, 2018.
https://docs.microsoft.com/en-us/windows/security/information-
protection/bitlocker/bitlocker-overview/.

11. Broz, Milan, ed. “DMCrypt.” Updated June 2019.
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt/.

12. Greenwald, Glenn, Ewen MacAskill, and Laura Poitras. “Edward
Snowden: The Whistleblower behind the NSA Surveillance
Revelations.” The Guardian, June 11, 2013.
http://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-
whistleblower-surveillance/.

Chapter 6

1. British Airways. “Customer Data Theft.” Accessed July 2, 2019.
https://www.britishairways.com/en-gb/information/incident/data-
theft/latest-information/.

2. FedRAMP. “FedRAMP Accelerated: A Case Study for Change within
Government.” Spring 2017, accessed July 2, 2019.

https://www.enigmaco.de/
http://petitcolas.net/kerckhoffs/index.html
https://beechplane.wordpress.com/2010/05/28/updating-shannons-maxim/
https://ee.stanford.edu/~hellman/publications/24.pdf
https://www.mirror.co.uk/news/uk-news/terror-threat-heathrow-airport-security-11428132
https://www.veracrypt.fr/
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview/
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt/
http://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance/
https://www.britishairways.com/en-gb/information/incident/data-theft/latest-information/

https://www.fedramp.gov/assets/resources/documents/FedRAMP_Accelerate
d_A_Case_Study_For_Change_Within_Government.pdf.

3. FedRAMP. “FedRAMP PMO, The Federal Risk and Management
Program Dashboard.” Accessed July 2, 2019.
https://marketplace.fedramp.gov/#/products?
sort=productName&status=Compliant.

4. Segal, Troy. “Enron Scandal: The Fall of a Wall Street Darling.”
Investopedia, updated May 29, 2019.
https://www.investopedia.com/updates/enron-scandal-summary/.

5. Federal Deposit Insurance Corporation. “Privacy Act Issues under
Gramm-Leach-Bliley.” Updated January 29, 2009.
https://www.fdic.gov/consumers/consumer/alerts/glba.html.

6. InMobi. “InMobi—FTC Settlement, Frequently Asked Questions.”
Accessed July 2, 2019. https://www.inmobi.com/coppa-ftc/.

7. Davies, Jessica. “The Impact of GDPR, in 5 Charts.” Digiday, August
24, 2018. https://digiday.com/media/impact-gdpr-5-charts/.

8. International Organization for Standardization. “All about ISO.”
Accessed July 2, 2019. https://www.iso.org/about-us.html.

9. Corkery, Michael, and N. Popper. “From Farm to Blockchain:
Walmart Tracks Its Lettuce.” New York Times, September 24, 2018.
https://www.nytimes.com/2018/09/24/business/walmart-blockchain-
lettuce.html.

Chapter 7

1. Haase, Kurt. “Kurt’s Laws of OPSEC.” Viewpoints 2 (1992). Wayne,
PA: National Classification Management Society.

2. Haase.

3. Haase.

4. Cimpanu, Catalin. “MongoDB Server Leaks 11 Million User
Records from E-marketing Service.” ZDNet, September 18, 2018.
https://www.zdnet.com/article/mongodb-server-leaks-11-million-user-
records-from-e-marketing-service/.

https://www.fedramp.gov/assets/resources/documents/FedRAMP_Accelerated_A_Case_Study_For_Change_Within_Government.pdf
https://marketplace.fedramp.gov/#/products?sort=productName&status=Compliant
https://www.investopedia.com/updates/enron-scandal-summary/
https://www.fdic.gov/consumers/consumer/alerts/glba.html
https://www.inmobi.com/coppa-ftc/
https://digiday.com/media/impact-gdpr-5-charts/
https://www.iso.org/about-us.html
https://www.nytimes.com/2018/09/24/business/walmart-blockchain-lettuce.html
https://www.zdnet.com/article/mongodb-server-leaks-11-million-user-records-from-e-marketing-service/

5. Shodan home page. Accessed July 2, 2019. https://www.shodan.io/.

6. Tzu, Sun. The Art of War. Translated by Samuel B. Griffith. Oxford,
UK: Oxford University Press, 1971.

7. Tzu.

8. Operations Security Professional’s Association. “The Origin of
OPSEC.” Accessed October 3, 2018.
http://www.opsecprofessionals.org/origin.html (Site discontinued).

9. Central Intelligence Agency. “George Washington, 1789–97.” Center
for the Study of Intelligence, March 19, 2007, updated July 7, 2008.
https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-
publications/books-and-monographs/our-first-line-of-defense-presidential-
reflections-on-us-intelligence/washington.html.

10. National Security Agency. Purple Dragon: The Origin and Development
of the United States OPSEC Program (Series VI, The NSA Period,
Volume 2). Fort Meade, MD: National Security Agency, Center for
Cryptologic History, 1993. Accessed July 2, 2019.
https://www.nsa.gov/news-features/declassified-documents/cryptologic-
histories/assets/files/purple_dragon.pdf.

11. SCIP home page. Accessed July 2, 2019. https://www.scip.org/.

12. The White House. “NSDD 298 National Operations Security
Program.” January 22, 1988, accessed July 2, 2019.
https://catalog.archives.gov/id/6879871/.

13. Naval Operations Security Support Team. “Posters.” US Navy,
accessed July 2, 2019. https://www.navy.mil/ah_online/opsec/posters.asp.

Chapter 8

1. Penzenstadler, Nick, Brad Heath, and Jessica Guynn. “We Read
Every One of the 3,517 Facebook Ads Bought by Russians. Here’s
What We Found.” USA Today, May 11, 2018.
https://www.usatoday.com/story/news/2018/05/11/what-we-found-
facebook-ads-russians-accused-election-meddling/602319002/.

https://www.shodan.io/
http://www.opsecprofessionals.org/origin.html
https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/books-and-monographs/our-first-line-of-defense-presidential-reflections-on-us-intelligence/washington.html
https://www.nsa.gov/news-features/declassified-documents/cryptologic-histories/assets/files/purple_dragon.pdf
https://www.scip.org/
https://catalog.archives.gov/id/6879871/
https://www.navy.mil/ah_online/opsec/posters.asp
https://www.usatoday.com/story/news/2018/05/11/what-we-found-facebook-ads-russians-accused-election-meddling/602319002/

Chapter 9

1. McConnell, N.C., K.E. Boyce, J. Shields, E.R. Galea, R.C. Day, and
L.M. Hulse. “The UK 9/11 Evacuation Study: Analysis of Survivors’
Recognition and Response Phase in WTC1.” Fire Safety Journal 45,
no. 1 (2008): 21–34.
https://www.sciencedirect.com/science/article/pii/S0379711209001180/.

2. Steven Musil. “Sony Delivers Floppy Disk’s Last Rites.” CNET News,
April 25, 2010. https://www.cnet.com/news/sony-delivers-floppy-disks-last-
rites/.

3. Patterson, David A., Garth Gibson, and Randy H. Katz. “A Case for
Redundant Arrays of Inexpensive Disks (RAID).” In SIGMOD’88:
Proceedings of the 1988 ACM Sigmoid International Conference on
Management of Data (pp. 109–16). New York: Association for
Computing Machinery. https://dl.acm.org/citation.cfm?id=50214/.

4. Blancco. The Leftovers: A Data Recovery Study. 2016. Accessed July 2,
2019. https://www.blancco.com/resources/rs-the-leftovers-a-data-recovery-
study/.

5. Naval History and Heritage Command. “NJ 96566-KN The First
‘Computer Bug.’” US Navy, accessed July 2, 2019.
https://www.history.navy.mil/content/history/nhhc/our-
collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-
96000/NH-96566-KN.html.

Chapter 10

1. Kazeem, Yomi. “The Internet Shutdown in English-Speaking Parts
of Cameroon Is Finally Over.” Quartz Africa, April 20, 2017.
https://qz.com/africa/964927/caemroons-internet-shutdown-is-over-after-
93-days/.

2. Mogul, Jeffrey C. “Simple and Flexible Datagram Access Controls
for Unix-Based Gateways.” USENIX Conference Proceedings, 1989.

3. Higgins, Kelly Jackson. “Who Invented the Firewall?” Dark Reading,
January 15, 2008. https://www.darkreading.com/who-invented-the-

https://www.sciencedirect.com/science/article/pii/S0379711209001180/
https://www.cnet.com/news/sony-delivers-floppy-disks-last-rites/
https://dl.acm.org/citation.cfm?id=50214/
https://www.blancco.com/resources/rs-the-leftovers-a-data-recovery-study/
https://www.history.navy.mil/content/history/nhhc/our-collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html
https://qz.com/africa/964927/caemroons-internet-shutdown-is-over-after-93-days/
https://www.darkreading.com/who-invented-the-firewall/d/d-id/1129238

firewall/d/d-id/1129238.

4. Kanellos, Michael. “New Wi-Fi Distance Record: 382 Kilometers.”
CNET News, June 18, 2007. https://www.cnet.com/news/new-wi-fi-
distance-record-382-kilometers/.

5. Burke, Stephanie. “Wi-Fi Alliance Introduces Wi-Fi CERTIFIED
WPA3 Security.” Wi-Fi Alliance, June 25, 2018. https://www.wi-
fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-certified-
wpa3-security/.

Chapter 11

1. Schneider, Fred B., ed. Trust in Cyberspace. Washington, DC:
National Academies Press, 1999.

2. Trend Micro home page. Accessed July 2, 2019.
https://www.trendmicro.com/vinfo/us/security/news/malware/.

3. Sentryo. “Analysis of Triton Industrial Malware.” March 27, 2018.
https://www.sentryo.net/analysis-of-triton-industrial-malware/.

4. Barrantes, E.G., D.H. Ackley, T.S. Palmer, D.D. Zovi, S. Forrest, and
D. Stefanovic, “Randomized Instruction Set Emulation to Disrupt
Binary Code Injection Attacks.” In CCS ’03: Proceedings of the 10th
ACM Conference on Computer and Communications Security (pp. 281–
89). New York: Association for Computing Machinery, 2003.

Chapter 12

1. Oberhaus, Daniel. “What Is SS7 and Is China Using It to Spy on
Trump’s Cell Phone?” Vice, October 25, 2018.
https://vice.com/en_us/article/598xyb/what-is-ss7-and-is-china-using-it-
to-spy-on-trumps-cell-phone/.

2. Browner, Ryan. “Hackers Are Using Blacklisted Bitcoin Apps to Steal
Money and Personal Data, According to Research.” CNBC, January
24, 2018. https://www.cnbc.com/2018/01/24/hackers-targeting-apple-
google-app-stores-with-malicious-crypto-apps.html.

https://www.darkreading.com/who-invented-the-firewall/d/d-id/1129238
https://www.cnet.com/news/new-wi-fi-distance-record-382-kilometers/
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-certified-wpa3-security/
https://www.trendmicro.com/vinfo/us/security/news/malware/
https://www.sentryo.net/analysis-of-triton-industrial-malware/
https://vice.com/en_us/article/598xyb/what-is-ss7-and-is-china-using-it-to-spy-on-trumps-cell-phone/
https://www.cnbc.com/2018/01/24/hackers-targeting-apple-google-app-stores-with-malicious-crypto-apps.html

3. Miessler, Daniel. “An ICS/SCADA Primer.” Daniel Miessler (blog),
February 4, 2016. https://danielmiessler.com/study/ics-scada/.

4. Ivezic, Marin. “Stuxnet: The Father of Cyber-kinetic Weapons.”
CSO, January 22, 2018.
https://www.csoonline.com/article/3250248/cyberwarfare/stuxnet-the-
father-of-cyber-kinetic-weapons.html.

5. Broad, William J., John Markoff, and David E. Sanger. “Israeli Test
on Worm Called Crucial in Iran Nuclear Delay.” The New York Times,
January 15, 2011.
https://www.nytimes.com/2011/01/16/world/middleeast/16stuxnet.html.

6. US Food & Drug Administration. “Cybersecurity Updates Affecting
Medtronic Implantable Cardiac Device Programmers: FDA Safety
Communication.” October 11, 2018.
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm623184.
htm.

7. Greenberg, Andy. “Hackers Remotely Kill a Jeep on the Highway—
With Me in It.” Wired, July 21, 2015.
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/.

8. McFarlane, Duncan. “The Origin of the Internet of Things.” RedBite
(blog), June 26, 2015. https://www.redbite.com/the-origin-of-the-
Internet-of-things/.

9. Lynx Software Technologies. “HP Uses the LynxOS® Real-Time
Operating System.” Accessed July 2, 2019. http://www.lynx.com/hp-
laserjet-printers/.

10. HP Customer Support–Knowledge Base. “HP Printing Security
Advisory—KRACK Attacks Potential Vulnerabilities.” Hewlett-
Packard, January 9, 2018, updated January 12, 2018.
https://support.hp.com/us-en/document/c05872536.

11. Tierney, Andrew. “Totally Pwning the Tapplock Smart Lock.” Pen
Test Partners, June 13, 2018. https://www.pentestpartners.com/security-
blog/totally-pwning-the-tapplock-smart-lock/.

12. Stykas, Vangelis. “Totally Pwning the Tapplock Smart Lock (the API
Way).” Medium, June 15, 2018. https://medium.com/@evstykas/totally-
pwning-the-tapplock-smart-lock-the-api-way-c8d89915f025/.

https://danielmiessler.com/study/ics-scada/
https://www.csoonline.com/article/3250248/cyberwarfare/stuxnet-the-father-of-cyber-kinetic-weapons.html
https://www.nytimes.com/2011/01/16/world/middleeast/16stuxnet.html
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm623184.htm
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.redbite.com/the-origin-of-the-Internet-of-things/
http://www.lynx.com/hp-laserjet-printers/
https://support.hp.com/us-en/document/c05872536
https://www.pentestpartners.com/security-blog/totally-pwning-the-tapplock-smart-lock/
https://medium.com/@evstykas/totally-pwning-the-tapplock-smart-lock-the-api-way-c8d89915f025/

13. Woolfe, Nicky. “DDoS Attack That Disrupted Internet Was Largest
of Its Kind in History, Experts Say.” The Guardian, October 26, 2016.
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-
mirai-botnet/.

Chapter 13

1. Target. “Target Confirms Unauthorized Access to Payment Card
Data in U.S. Stores.” Press release, December 19, 2013.
https://corporate.target.com/press/releases/2013/12/target-confirms-
unauthorized-access-to-payment-car/.

2. Target. “Target Provides Update on Data Breach and Financial
Performance.” Press release, January 10, 2014.
https://corporate.target.com/press/releases/2014/01/target-provides-update-
on-data-breach-and-financia/.

3. Shu, Xiaokui, Ke Tian, Andrew Ciambrone, and Danfeng Yao.
“Breaking the Target: An Analysis of Target Data Breach and Lessons
Learned.” arXiv, January 18, 2017, accessed July 2, 2019.
https://arxiv.org/pdf/1701.04940.pdf.

4. Schiela, Robert. “SEI CERT Coding Standards.” Confluence:
Carnegie Mellon University Software Engineering Institute,
February 5, 2019.
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Sta
ndards/.

5. Gibson Research Corporation. “How Big is Your Haystack?”.
Accessed August 2, 2019. https://www.grc.com/haystack.htm/.

6. Litchfield, David, Chris Anley, John Heasman, and Bill Grindlay. The
Database Hacker’s Handbook: Defending Database Servers. Hoboken, NJ:
Wiley, 2005.

7. Miller, Bart. “Computer Sciences Department, University of
Wisconsin–Madison, CS 736, Fall 1998, Project List” (syllabus).
Accessed July 2, 2019. http://pages.cs.wisc.edu/~bart/fuzz/CS736-
Projects-f1988.pdf.

https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet/
https://corporate.target.com/press/releases/2013/12/target-confirms-unauthorized-access-to-payment-car/
https://corporate.target.com/press/releases/2014/01/target-provides-update-on-data-breach-and-financia/
https://arxiv.org/pdf/1701.04940.pdf
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards/
https://www.grc.com/haystack.htm/
http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf

Chapter 14

1. Hartmans, Avery. “A Superstar Chinese Hacker Just Won $112,000
from Google, Its Largest Bug Bounty Ever.” Business Insider, January
20, 2018. https://www.businessinsider.com/guang-gong-qihoo-360-google-
pixel-2-hacking-bug-bounty-2018-1.

2. Security Onion homepage. Accessed July 2, 2019.
https://securityonion.net/.

3. Ryznar, Barbara A. “Alert Fatigue: An Unintended Consequence.”
Illuminating Informatics (blog). Journal of AHIMA, July 3, 2018.
http://journal.ahima.org/2018/07/03/alert-fatigue-an-unintended-
consequence/.

https://www.businessinsider.com/guang-gong-qihoo-360-google-pixel-2-hacking-bug-bounty-2018-1
https://securityonion.net/
http://journal.ahima.org/2018/07/03/alert-fatigue-an-unintended-consequence/

INDEX

Numbers

3DES, 70

A

access controls

access control lists (ACLs), 38–43

implementation of, 37–43

models, 43–48

overview, 35–37

physical access controls, 48–50, 124–125

accountability, 52–55

active discovery, 193

address space layout randomization (ASLR), 151–152

Adleman, Leonard, 71

administrative controls, 14, 81, 127

Advanced Encryption Standard (AES), 70, 178

agented scans, 194

air-gapped networks, 165

alerting, 204

AMD, 152

anomaly detection, 138, 151

anti-malware tools, 151

Apple, 163

applications. See also software

mobile devices, 163

overview, 173–174

penetration testing (pentesting) of, 198–199

scanning, 194

tools for, 184–188

arbitrary code execution, 183

The Art of War (Sun Tzu), 102

Ashton, Kevin, 167

assessments, 57–58

asset identification, 11

associated risk, 10. See also risks

asymmetric key cryptography, 70–71. See also cryptography

attacks

attack surfaces, 146

denial-of-service (DoS) attacks, 5

types of, 8–10

attribute-based access control (ABAC), 45

auditing, 52, 55–58, 150

authenticated scans, 193–194

authentication

attacks, 177, 183

methods of, 25–33

overview, 7, 23–24, 25–28

authority to operate (ATO), 84

authorization. See also access controls

attacks, 177

vs. authentication, 25

overview, 35

automobiles, 165–166

availability

and confidentiality, integrity, and availability (CIA) triad, 5

interruption attacks, 9

Parkerian hexad and, 7

B

baseband operating systems, 162

Bell–LaPadula model, 46

Biba model, 47

biometrics, 26, 29–32

Bitcoin, 92

black-box testing, 197

black hat hackers, 195

blackholing, 40

blockchain, 91–92

block ciphers, 69–70

block mode, 69

blue teams, 203

botnets, 170

bounds checking, 175

breaches, 100

Brewer and Nash Model, 47–48

bring-your-own-device (BYOD) policies, 161

browsers, 179

brute forcing, 68

buffer overflows, 151–152, 175

bug bounty programs, 200–201

Bugcrowd, 201

bugs, 130

Burp Suite, 187–188, 194

business competition, 103

business continuity planning (BCP), 122

Business Software Alliance (BSA), 56

C

Caesar cipher, 62

cameras, 168

Cameroon, 134

capabilities, 42–43

CAPTCHAs, 45

The Car Hacker’s Handbook (Smith), 166

cars, 165–166

central management, 159–161

certificate authority, 73

certificates, 73–74

chain of custody, 55

Children’s Internet Protection Act (CIPA) (2000), 86

Children’s Online Privacy Protection Act (COPPA) (1988), 86

Chinese Wall model, 47–48

choke points, 134, 169, 193

Cisco, 25

class A and class B internal networks, 192

clean desk policies, 119

cleartext, 61

clickjacking, 42, 178–179

client-side attacks, 41, 178–179

cloud computing, 89–91, 194–195, 201

code, 183

collision, 72

compensating controls, 82

competitive intelligence and competitive counterintelligence, 103

Competitive Strategy: Techniques for Analyzing Industries and Competitors
(Porter), 103

compliance. See also laws and regulations

controls for achieving, 81–82

frameworks for, 87–89

maintaining, 82–83

overview, 79–81

technological changes and, 89–92

confidentiality, 5, 7

confidentiality, integrity, and availability (CIA) triad, 4–6, 8

configuration files, 180

confused deputy problem, 41

containers, 195

controller area network (CAN) bus, 165–166

controls, 14

corporate-owned business only (COBO) and corporate-owned
personally enabled (COPE) mobile devices, 161

Cotton, Gerald, 92

countermeasures, 98

critical information assets, 96

cross-site request forgery (CSRF), 41–42, 178–179

cross-site scripting (XSS), 178

cryptocurrencies, 92, 163

cryptography

algorithms, 61–66

asymmetric key cryptography, 70–71

attacks, 178

elliptic curve cryptography (ECC), 71

history of, 62–66

keyless cryptography, 71–72

overview, 61

symmetric key cryptography, 68–69

tools for, 67–74

uses of, 74–77

cyber intelligence/digital network intelligence (CYBINT/DNINT),
114

D

data

protection of, 127–129

at rest and in motion, 9, 74–77

storage of, 7, 128–129

databases, 181–184

Data-Life project, 169

deep packet inspection firewalls, 136

default accounts, 148–149

defense in depth strategy, 17–20

demilitarized zones (DMZs), 137

denial-of-service (DoS) attacks, 5

DES, 69–70

detective controls, 123–124

deterrence, 54

deterrent controls, 123

Diffie, Whitfield, 70

digital certificates, 73–74

digital network intelligence (DNINT), 114

digital signatures, 72–73

directory traversal attacks, 180

disaster recovery planning (DRP), 122

disclosure, alteration, and denial (DAD), 5. See also confidentiality,
integrity, and availability (CIA) triad

discretionary access control (DAC) model, 43

distributed denial-of-service (DDoS) attacks, 170

DMZs (demilitarized zones), 137

dongles, 32

dynamic analysis, 199

E

Ecole de Guerre Economique (Economic Warfare School), 103

electronic intelligence (ELINT), 114

electronic protected health information (e-PHI), 85

elliptic curve cryptography (ECC), 71

embedded devices, 164–167, 169

encryption, 61, 70, 178

energy anomalies, 125

Enhanced Virus Protection, 152

Enigma machine, 64–65

enterprise mobility management, 161

environmental attributes, 45

equal error rates (EERs), 31

Equifax, 53

equipment, 129–132

EtherApe, 185

Ethereal, 142

ethical hacking, 195–200

evacuations, 126–127

executable space protection, 151–152

Execute Disable (XD) bit, 152

EXIF data, 111–112

exploit frameworks, 156

F

fabrication attacks, 10

Facebook, 109

factors, 26–27

false acceptance rates (FARs) and false rejection rates (FRRs), 31

falsified information, 25

Family Educational Rights and Privacy Act (FERPA) (1974), 86

Fazio Mechanical, 174

Federal Information Security Management Act (FISMA) (2002), 4, 84

Federal Risk and Authorization Management Program (FedRAMP), 85

Fighting Computer Crime (Parker), 6, 122

file metadata, 111

file system ACLs, 38–39

FIM (file integrity monitoring) tools, 203–204

financial intelligence (FININT), 114

fingerprints, 29–30. See also biometrics

firewalls, 135–137, 143–144, 152–153

flash media, 128

forensic investigations, 111

format string attacks, 176

frequency analysis, 67

FTP (File Transfer Protocol), 140

full disk encryption, 75

fuzzers, 188

G

General Data Protection Regulation (GDPR) (2018), 87

geospatial intelligence (GEOINT), 113

GitHub, 169

Global Positioning System (GPS) information, 112

Google, 110–111, 163, 200

Gramm–Leach–Bliley Act (GLBA) (1999), 86

gray-box testing, 198

Greenbone, 155

group permissions, 39

H

Haase, Kurt, 99

HackerOne, 201

hard-coded passwords, 177

hardware devices, 200

hardware tokens, 32–33

hash functions, 71–72

Health Insurance Portability and Accountability Act (HIPAA) (1996), 4,
52, 85

Hellman, Martin, 70

heuristics, 151

honeypots and honeynets, 143

hosts, 193

human intelligence (HUMINT), 108

I

IaaS (infrastructure as a service) environments, 89–91, 195

identification, 23–33

identity thieves, 25

impact, 11

impersonation attacks, 27–28

incident response process, 15–17

industrial control systems, 164–165

industrial espionage, 103

industry compliance, 80–81. See also compliance

information security policies, 81–82

infrastructure as a service (IaaS) environments, 89–91, 195

input validation attacks, 176, 180

integrity, 5, 7

Intel, 152

Interagency OPSEC Support Staff (IOSS), 104

interception attacks, 8

International Organization for Standardization (ISO), 88

Internet of Things (IoT) devices, 159, 167–170

Internet Protocol (IP) addresses, 40

Internet Protocol Security (IPsec), 76

interruption attacks, 9

intrusion detection systems (IDSs)

accountability and, 54–55

implementation of, 138

operating systems and, 152–153

intrusion prevention systems (IPSs), 54–55

IOSS (Interagency OPSEC Support Staff), 104

IP addresses, 40

J

jailbreaking, 162–163

Java Virtual Machine (JVM), 37

Jefferson Disk, 62–64

job listings, 109

Joint Test Action Group (JTAG) debug ports, 200

K

Kali, 141

Kerckhoffs, Auguste, 66

key controls, 82

key exchange, 68

keyless cryptography, 71–72

keys, 61

keyword ciphers, 67

Kismet, 141, 143

KRACK vulnerability, 168

L

laws and regulations. See also compliance

Children’s Internet Protection Act (CIPA) (2000), 86

Children’s Online Privacy Protection Act (COPPA) (1988), 86

familiarity with, 119

Family Educational Rights and Privacy Act (FERPA) (1974), 86

Federal Information Security Management Act (FISMA) (2002), 4

General Data Protection Regulation (GDPR) (2018), 87

Gramm–Leach–Bliley Act (GLBA) (1999), 86

Health Insurance Portability and Accountability Act (HIPAA)
(1996), 4, 52, 85

international, 87

overview, 4

Sarbanes–Oxley Act (SOX) (2002), 52, 55, 85

Linux operating systems, 141, 149, 185

logging, 56–57, 150

logical controls, 14

M

magnetic media, 127–129

malicious apps, 163

Maltego, 113

malware, 118, 151–153, 170

mandatory access control (MAC) model, 43

man-in-the-middle attacks, 27–28

mapping environments, 192

measurement and signature intelligence (MASINT), 113

Media Access Control addresses, 40

medical devices, 165

metadata, 111

Metasploit framework, 155

Microsoft, 149

Miller, Barton, 188

Miller, Charlie, 166

minutiae, 29–30

Mirai botnet, 170

mitmproxy, 169

mobile devices, 160–164

modification attacks, 9

Mogul, Jeffrey, 135

monitoring, 57

multifactor authentication, 27

multilevel access control models, 45–48

mutual authentication, 27

N

National Institute of Standards and Technology (NIST), 84, 88

National Security Agency (NSA), 11

Nessus, 191

networks

access control lists (ACLs), 39–41

air-gapped networks, 165

class A and class B internal networks, 192

Internet of Things (IoT) devices on, 167–168

overview, 133–134

penetration testing of, 198

protection of, 134–138

security tools, 140–144

segmentation, 134

tools for, 140–144

usage, 117–118

virtual private network (VPN) connections, 76, 118, 139

wireless networks, 139–141

NIST (National Institute of Standards and Technology), 84, 88

Nmap, 141, 147–148, 153–155, 192

noncompliance, 81. See also compliance

nonmobile devices, 161

nonrepudiation, 7, 54, 73

NoScript, 179

O

one-time pads, 67–68

one-way problems, 66

open source intelligence (OSINT), 108–113

OpenVAS, 155–156

operating systems

malware and, 151–153

operating system hardening, 146–150

overview, 145–146

tools for, 153–156

operations security (OPSEC)

laws of, 99–100

origins of, 101–104

overview, 95–98

personal data and, 100–101

optical media, 128

OWASP Zed Attack Proxy (ZAP), 186

P

PaaS (platform as a service) environments, 89–91, 195

packets, 135–136, 138

packet sniffers, 142–143

Parker, Donn, 6–8, 122

Parkerian hexad, 6–8, 12

passive scanning, 193

passwords

authentication attacks and, 177

defense in depth strategy, 18

overview, 28–29

password managers, 29

security training programs and, 116–117

Payment Card Industry Data Security Standard (PCI DSS), 4, 80

penetration testing (pentesting), 19, 58, 195–201

people, protection of, 125–127

permissions, 38–40

personal equipment, 118

phishing, 114–115

physical controls

compliance and, 81

overview, 14, 48–50

types of, 122–125

physical penetration testing, 199

physical security

data, 75, 127–129

devices, 168

equipment, 129–132

overview, 121–122

people, 125–127

threats, 122

plaintext, 61

platform as a service (PaaS) environments, 89–91, 195

Porter, Michael E., 103

ports, 40–41

port scanners, 141, 147–148, 153–155

possession, 7

Post Office Protocol (POP), 140

pretexting, 114

Pretty Good Privacy (PGP), 71

preventive controls, 124

principle of least privilege, 43–44, 149

printers, 167

Privacy Rights Clearinghouse, 100

privilege escalation attacks, 183–184

protected health information (PHI), 85

protocols

FTP (File Transfer Protocol), 140

Internet Protocol (IP) addresses, 40

Internet Protocol Security (IPsec), 76

Post Office Protocol (POP), 140

Secure File Transfer Protocol (SFTP), 140

Secure Sockets Layer (SSL) protocol, 71

Signaling System No. 7 (SS7) protocol, 162

vulnerabilities and, 182

proxy servers, 137

public key infrastructure (PKI), 74

public records, 109–110

public wireless networks, 139–141

Purple Dragon, 103

purple teams, 203

Q

Quadriga, 92

Qualys, 58, 191

R

race conditions, 175–176

RAID arrays, 128

reactive tools, 56–57

Reagan, Ronald, 104

real-time operating systems (RTOSs), 164–165

red teams, 196

redundant arrays of inexpensive disks (RAID), 128

regulations. See laws and regulations

regulatory compliance, 80–81. See also compliance

remote code executions (RCEs), 53, 183

residual data, 129

resource attributes, 45

résumés, 109

risk-based approach, 84

risks. See also operations security (OPSEC)

assessment of, 13, 98

management processes, 11

mitigation of, 14

overview, 10

Rivest, Ron, 71

Rivest-Shamir-Adleman (RSA) algorithm, 71, 178

rogue access points, 139–140

role-based access control (RBAC) model, 44

ROT13 cipher, 62

rule-based access control, 44

rules of engagement, 196, 201

S

SaaS (software as a service) environments, 89–91

safety of people, 126

sandboxes, 37

Sarbanes–Oxley Act (SOX) (2002), 52, 55, 85

SaverSpy, 100

scanners, 141, 153–155, 193–194. See also vulnerabilities

Scapy, 143

SCIP (Strategic and Competitive Intelligence Professionals), 103

scoping, 196

Secure File Transfer Protocol (SFTP), 140

secure protocols, 140

Secure Shell (SSH), 140

Secure Sockets Layer (SSL) protocol, 71

security through obscurity strategy, 65

segmentation, 134

server-side attacks, 179–181

services, 147–148

SFTP (Secure File Transfer Protocol), 140

Shamir, Adi, 71

Shannon, Claude, 66

shifts, 67–68

Shodan, 100, 112

Signaling System No. 7 (SS7) protocol, 162

signals intelligence (SIGINT), 114

signature-based IDS, 138

“Simple and Flexible Datagram Access Controls” (Mogul), 135

smart devices, 159, 167–170

smart locks, 168

sniffers, 142–143, 184–185

Snowden, Edward, 76

social engineering attacks

information for, 108–114

overview, 107–108

penetration testing (pentesting) and, 199–200

security training programs and, 117

types of, 114–116

social media, 101, 109

sockets, 41

software. See also applications

databases, 181–184

extraneous, 146–147, 181

licenses, 56

vulnerabilities, 174–178

web applications, 178–181

software as a service (SaaS) environments, 89–91

Spafford, Eugene, 2

spear phishing, 115

Special Publications (SPs), 84, 88

spidering, 186

SQL injection, 184

SSH (Secure Shell), 140

stateful packet inspection firewalls, 136

static analysis, 199

Strategic and Competitive Intelligence Professionals (SCIP), 103

stream ciphers, 69

StrongVPN, 139

Stuxnet virus, 164

subject attributes, 45

subnets, 134

substitution ciphers, 62

Sun Tzu, 102

supervisory control and data acquisition systems, 164

surveillance cameras, 168

symmetric key cryptography, 68–69. See also cryptography

Synack, 201

T

tailgating, 48–49, 116, 200

Talos Intelligence Group, 25

Tapplock, 168

Target Corporation, 173–174

Tcpdump, 142

technical controls, 14, 82

technical intelligence (TECHINT), 114

technological changes

compliance and, 89–92

data storage and, 128

Internet of Things (IoT) devices and, 170

vulnerability assessments and, 204–205

threats. See also operations security (OPSEC)

analysis of, 97

identification of, 12, 122

overview, 10

tokens, 42–43

Triton, 151, 164

trust but verify, 117, 187

two-factor authentication, 27

U

unauthenticated scans, 193

unified endpoint management, 161

Universal Asynchronous Receiver/Transmitter (UART) debug ports,
200

UNIX operating systems, 149

updates

browsers, 179

embedded devices, 166

mobile devices, 163–164

operating systems, 150

user interface redressing, 42

US National Institute of Standards and Technology (NIST), 84

US National Security Agency (NSA), 11

utility, 7

V

Valasek, Chris, 166

validation, 176, 180

vehicles, 165–166

Vietnam War, 103

VPN (virtual private network) connections, 76, 118, 139

vulnerabilities. See also operations security (OPSEC)

assessment of, 12–13, 58, 97, 155–156, 191–195

overview, 10

protocols and, 182

scanners, 141, 153–155, 193–194

software development, 174–178

W

Washington, George, 102

web applications, 178–181

white-box testing, 197–198

Wi-Fi Protected Access (WPA, WPA2, and WPA3), 140

Wired Equivalent Privacy (WEP), 140

wireless networks, 139–140, 141

Wireshark, 142, 184–185

X

XD bit, 152

XSS (cross-site scripting), 178

Z

ZAP (Zed Attack Proxy), 186

zero-day attacks, 141

Foundations of Information Security is set in New Baskerville, Futura, and
Dogma.

RESOURCES

Visit https://nostarch.com/foundationsinfosec/ for errata and more
information.

More no-nonsense books from NO STARCH PRESS

REAL-WORLD BUG HUNTING

A Field Guide to Web Hacking

by PETER YAWORSKI

JULY 2019, 264 PP., $39.95

ISBN 978-1-59327-861-8

https://nostarch.com/foundationsinfosec/

BLACK HAT PYTHON

Python Programming for Hackers and Pentesters

by JUSTIN SEITZ

DECEMBER 2014, 192 PP., $34.95

ISBN 978-1-59327-590-7

PRACTICAL PACKET ANALYSIS, 3RD EDITION

Using Wireshark to Solve Real-World Network Problems

by CHRIS SANDERS

APRIL 2017, 368 PP., $49.95

ISBN 978-1-59327-802-1

SERIOUS CRYPTOGRAPHY

A Practical Introduction to Modern Encryption

by JEAN-PHILIPPE AUMASSON

NOVEMBER 2017, 312 PP., $49.95

ISBN 978-1-59327-826-7

PRACTICAL MALWARE ANALYSIS

The Hands-On Guide to Dissecting Malicious Software

by MICHAEL SIKORSKI and ANDREW HONIG

FEBRUARY 2012, 800 PP., $59.95

ISBN 978-1-59327-290-6

LINUX BASICS FOR HACKERS

Getting Started with Networking, Scripting, and Security in
Kali

by OCCUPYTHEWEB

DECEMBER 2018, 248 PP., $34.95

ISBN 978-1-59327-855-7

PHONE:
800.420.7240 OR
415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://www.nostarch.com/

Begin your journey into the dynamic and
rewarding field of information security

In this survey of the information-security fundamentals, best-selling
author Jason Andress covers the basics of a wide variety of topics, from
authentication and authorization to maintaining confidentiality and
performing penetration testing.

Using real-world security breaches as examples, Foundations of
Information Security explores operations security, network design,
operating system hardening and patching, and mobile device security, as
well as tools for assessing the security of hosts and applications.

You’ll also learn the basics of:

 Multifactor authentication and how biometrics and hardware tokens
can be used to harden the authentication process

 The principles behind modern cryptography, including symmetric
and asymmetric algorithms, hashes, and certificates

 The laws and regulations that protect systems and data

 Anti-malware tools, firewalls, and intrusion detection systems

 Vulnerabilities such as buffer overflows and race conditions

A valuable resource for beginning security professionals, network
systems administrators, or anyone new to the field, Foundations of
Information Security is a great place to start your journey into the
dynamic and rewarding study of information security.

About the Author

Dr. Jason Andress is a seasoned security professional, security
researcher, and technophile. He has been writing about security topics
for over a decade, including data security, network security, hardware
security, penetration testing, and digital forensics, among others.

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

http://www.nostarch.com/

	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Technical Reviewer
	CONTENTS IN DETAIL
	ACKNOWLEDGMENTS
	INTRODUCTION
	Who Should Read This Book?
	About This Book

	1 WHAT IS INFORMATION SECURITY?
	Defining Information Security
	When Are You Secure?
	Models for Discussing Security Issues
	Attacks
	Defense in Depth
	Summary
	Exercises

	2 IDENTIFICATION AND AUTHENTICATION
	Identification
	Authentication
	Common Identification and Authentication Methods
	Summary
	Exercises

	3 AUTHORIZATION AND ACCESS CONTROLS
	What Are Access Controls?
	Implementing Access Controls
	Access Control Models
	Physical Access Controls
	Summary
	Exercises

	4 AUDITING AND ACCOUNTABILITY
	Accountability
	Security Benefits of Accountability
	Auditing
	Summary
	Exercises

	5 CRYPTOGRAPHY
	The History of Cryptography
	Modern Cryptographic Tools
	Protecting Data at Rest, in Motion, and in Use
	Summary
	Exercises

	6 COMPLIANCE, LAWS, AND REGULATIONS
	What Is Compliance?
	Achieving Compliance with Controls
	Maintaining Compliance
	Laws and Information Security
	Adopting Frameworks for Compliance
	Compliance amid Technological Changes
	Summary
	Exercises

	7 OPERATIONS SECURITY
	The Operations Security Process
	Laws of Operations Security
	Operations Security in Our Personal Lives
	Origins of Operations Security
	Summary
	Exercises

	8 HUMAN ELEMENT SECURITY
	Gathering Information for Social Engineering Attacks
	Types of Social Engineering Attacks
	Building Security Awareness with Security Training Programs
	Summary
	Exercises

	9 PHYSICAL SECURITY
	Identifying Physical Threats
	Physical Security Controls
	Protecting People
	Protecting Data
	Protecting Equipment
	Summary
	Exercises

	10 NETWORK SECURITY
	Protecting Networks
	Protecting Network Traffic
	Network Security Tools
	Summary
	Exercises

	11 OPERATING SYSTEM SECURITY
	Operating System Hardening
	Protecting Against Malware
	Operating System Security Tools
	Summary
	Exercises

	12 MOBILE, EMBEDDED, AND INTERNET OF THINGS SECURITY
	Mobile Security
	Embedded Security
	Internet of Things Security
	Summary
	Exercises

	13 APPLICATION SECURITY
	Software Development Vulnerabilities
	Web Security
	Database Security
	Application Security Tools
	Summary
	Exercises

	14 ASSESSING SECURITY
	Vulnerability Assessment
	Penetration Testing
	Does This Really Mean You’re Secure?
	Summary
	Exercises

	NOTES
	INDEX

